- Legend
- Added
- Deleted
This documents obsoletes ripe-65, version 0.6 of this document
Abstract
This document describes the
procedures for the reassignment of IP network numbers from blocks obtained from the RIPE Network Coordination Centre. It deals with items as providing information for the RIPE database, as well as reassignment of IP addresses in light of the "Supernetting" proposal, as documented in RFC 1338, by Vince Fuller et al.
Introduction
Since May 1st 1992, the RIPE Network Coordination Centre (NCC) is acting as a delegated registry for IP networks numbers to NICs and NOCs in Europe. It is RIPE NCC policy not to give out network numbers to individual organisations, who should refer in turn, to their IP network service provider.
The mission of the RIPE NCC is to give network numbers to the various service providers and NICs. The NICs and NOCs can then reassign the actual IP network numbers to organisations requesting IP network numbers.
Class B Network Number Allocation Procedure
Service providers can request Class B network numbers on a one-by-one basis from the RIPE NCC. Because class B address space is a critical resource, a request for a class B network number must be accompanied by a justification in terms of the requesting organisation's size, current network and expected network growth. The requestor should also make clear why they cannot use a block of class C network numbers to achieve their goals. The RIPE NCC will review requests using the same standards as any other Internet Registry, particularly the US NIC.
Class C Allocation Procedures
NICs and NOCs accepting a block of class C numbers agree to adhere to the following procedures:
A)Contents
1.0 Definition
Link: #Definition 2.0 Assignment Criteria
Link: #AssignmentCriteria 3.0 Returning AS Numbers
Link: #Returning 4.0 Transferring AS Numbers
Link: #Transferring 5.0 32-bit AS Numbers
Link: #ASnumbers 6.0 Registration
Link: #Registration 7.0 References
Link: #References 8.0 Attribution Link: #Attribution
1.0 Definition
An Autonomous System (AS) is a group of IP networks run by one or more network operators with a single clearly defined routing policy. When exchanging exterior routing information, each AS is identified by a unique number. Exterior routing protocols such as BGP, described in RFC1771 Link: ftp://ftp.ripe.net/rfc/rfc1771.txt , "A Border Gateway Protocol 4 (BGP-4)", are used to exchange routing information between Autonomous Systems. An AS will normally use some interior gateway protocol to exchange routing information on its internal networks.
2.0 Assignment Criteria
In order to help decrease global routing complexity, a new AS Number should be used only if a new external routing policy is required, see RFC1930 Link: ftp://ftp.ripe.net/rfc/rfc1930.txt .
A network must be multihomed in order to qualify for an AS Number.
When requesting an AS Number the routing policy of the Autonomous System must be provided. The new unique routing policy should be defined in RPSL language, as used in the RIPE Database.
B) In order to prevent implementation problems, network numbers ending with 0 or 255 should NOT be reassigned.
C) Full information about reassigned network numbers must be reported back to the RIPE NCC in full RIPE database format (ref ripe-13). The complete entries should be sent immediately after reassignment to <assign@ripe.net>. The RIPE NCC is ready to accept block entries for the RIPE database. For block syntax, please contact the RIPE NCC.
D) Reassignment of class C network numbers should be done in a manner that facilitates Supernetting (see next section).
E) Requests for network numbers should be reasonable. All NICs and NOCs should prevent stockpiling of network numbers.
F) On first request from the RIPE NCC, the class C network numbers not yet reassigned, must be returned to the RIPE NCC.
Supernetting
NICs and NOCs reassigning IP network numbers are urgently requested to read the Supernetting proposal by Vince Fuller et al. This document can be obtained from the rfc section of the RIPE document store or other RFC servers. It is called rfc1338.txt. The Supernetting proposal was made to reduce the increase of routing table size in the current Internet. It proposes to create a hierarchy of IP network numbers, which can then be aggregated resulting in less routing table entries in routing equipment. While this proposal has not been formally adopted we expect that something at least along the same principle will be implemented in the near future.
Here is how it works:
3.0 Returning AS Numbers
If an organisation A needs 8 class C network numbers, the numbers should be given out in such a way that the routing information for each of these 8 networks could appear as one entry with the correct mask in routers.
More concretely:
Service provider S hands out networks 192.24.8 through 192.24.15 to organisation A. These networks can then appear in routing equipment as a supernet route to 192.24.8 with mask 255.255.248.0. This way 8 class C network numbers appear as one routing table entry.
The guidelines that can be derived from the Supernetting proposal are:
A) Service providers should reserve blocks of class C network numbers from their allocation for each organisations requesting class C network numbers.
B) The size of these blocks should always be a power of 2.
C) The numbers in these blocks should be contiguous.
D) The blocks should start on bit boundaries. (ie powers of 2, AND multiples of the block size)
E) The blocks reserved for an organisation should be sufficient for a reasonable expected growth over the next few years.
F) Multi-homed organizations may obtain address space from one of their providers, the RIPE NCC, or the global NIC, as is appropriate to their network configuration. These organisations are strongly encouraged to contact the RIPE NCC for guidance.
If you have any questions concerning this, please do not hesitate to call or mail us at ncc@ripe.net.
4.0 Transferring AS Numbers
The transfer of Internet number resources is governed by the RIPE Document, "RIPE Resource Transfer Policies Link: http://www.ripe.net/publications/docs/transfer-policies ".
5.0 32-bit AS Numbers
The RIPE NCC assigns 32-bit AS Numbers according to the following timeline:
From 1 January 2007 the RIPE NCC will process applications that specifically request 32-bit only AS Numbers (AS Numbers that can not be represented with 16 bits) and assign such AS Numbers as requested by the applicant. In the absence of any specific request for a 32-bit only AS Number, the RIPE NCC will assign a 16-bit AS Number.
From 1 January 2009 the RIPE NCC will process applications that specifically request 16-bit AS Numbers and assign such AS Numbers as requested by the applicant. In the absence of any specific request for a 16-bit AS Number, the RIPE NCC will assign a 32-bit only AS Number.
From 1 January 2010 the RIPE NCC will cease to make any distinction between 16-bit AS Numbers and 32-bit only AS Numbers, and it will operate AS Number assignments from an undifferentiated 32-bit AS Number allocation pool.
6.0 Registration
The RIPE NCC will register the resources issued in the RIPE Database.
7.0 References
[RFC1771] "A Border Gateway Protocol 4 (BGP-4)" http://www.ietf.org/rfc/rfc1771.txt Link: http://www.ietf.org/rfc/rfc1771.txt
[RFC1930] " Guidelines for creation, selection, and registration of an Autonomous System (AS)" http://www.ietf.org/rfc/rfc1930.txt Link: http://www.ietf.org/rfc/rfc1930.txt
[RFC2026] "The Internet Standards Process -- Revision 3 IETF Experimental RFC http://www.ietf.org/rfc/rfc2026.txt Link: http://www.ietf.org/rfc/rfc2026.txt see Sec. 4.2.1
8.0 Attribution
This document is compiled from policies developed by the RIPE community.
The following people actively contributed by making proposals through the RIPE Policy Development Process:
Nick Hilliard, Geoff Huston