<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    [Apologies for cross-posting]<br>
    <br>
    <span lang="EN-US">1st GNNet Workshop<br>
    </span><span lang="EN-US">Graph Neural Networking Workshop</span><span
      lang="EN-US"></span><br>
    <span lang="EN-US">Co-located with ACM CoNEXT 2022</span><br>
    <span lang="EN-US">December 9, 2022</span><br>
    <span lang="EN-US"><a
        href="https://bnn.upc.edu/workshops/gnnet2022/"
        class="moz-txt-link-freetext">https://bnn.upc.edu/workshops/gnnet2022/</a></span><br>
    <br>
    <span lang="EN-US">We are glad to announce the first edition of the
      “Graph Neural Networking Workshop 2022”, which is organized as
      part of ACM CoNEXT 2022, to be held in Rome, Italy. <br>
    </span><span lang="EN-US">All accepted papers will be included in
      the conference proceedings and be made available in the ACM
      Digital Library.</span><br>
    <br>
    <span lang="EN-US"> </span><br>
    <br>
    <span lang="EN-US">SPECIAL SESSION</span><br>
    <span lang="EN-US">==============</span><br>
    <span lang="EN-US">GNNet would include a dedicated special session
      where the top teams competing at the third edition of the Graph
      Neural Networking Challenge (<a
        href="https://bnn.upc.edu/challenge/gnnet2022/"
        class="moz-txt-link-freetext">https://bnn.upc.edu/challenge/gnnet2022/</a>)
      would be invited to present the winning solutions of the
      challenge, providing an excellent complement to the main program.</span><br>
       <span lang="EN-US"></span><br>
    <br>
    <span lang="EN-US">IMPORTANT DATES</span><br>
    <span lang="EN-US">================</span><br>
    <span lang="EN-US">Paper registration deadline: September 9, 2022</span><br>
    <span lang="EN-US">Paper submission deadline: September 16, 2022</span><br>
    <span lang="EN-US">Paper acceptance notifications: October 17, 2022</span><br>
    <span lang="EN-US">Camera ready due: October 25, 2022</span><br>
      <br>
    <span lang="EN-US">Submissions’ site -- <a
        href="https://conext-gnnet2022.hotcrp.com/"
        class="moz-txt-link-freetext">
        https://conext-gnnet2022.hotcrp.com/</a></span><br>
    <br>
    <span lang="EN-US"> </span><br>
    <span lang="EN-US">MOTIVATION</span><br>
    <span lang="EN-US">===========</span><br>
    <br>
    <span lang="EN-US">While AI/ML is today mainstream in domains such
      as computer vision and speech recognition, traditional AI/ML
      approaches have produced below-par results in many networking
      applications. Proposed AI/ML solutions in networking do not
      properly generalize, can be unreliable and ineffective in
      real-network deployments, and are in general unable to properly
      deal with the strong dynamics and changes (i.e., concept drift)
      occurring in networking applications.</span><br>
      <br>
    <span lang="EN-US">Graphs are emerging as an abstraction to
      represent complex data. Computer Networks are fundamentally
      graphs, and many of their relevant characteristics – such as
      topology and routing – are represented as graph-structured data.
      Machine learning, especially deep representation learning, on
      graphs is an emerging field with a wide array of applications.
      Within this field, Graph Neural Networks (GNNs) have been recently
      proposed to model and learn over graph-structured data. Due to
      their unique ability to generalize over graph data, GNNs are a
      central tool to apply AI/ML techniques to networking applications.</span><br>
    <br>
    <span lang="EN-US"> </span><br>
    <br>
    <span lang="EN-US"> GOALS</span><br>
    <span lang="EN-US">======</span><br>
    <span lang="EN-US">The goal of GNNet is to leverage graph data
      representations and modern GNN technology to advance the
      application of AI/ML in networking. GNNet provides the first
      dedicated venue to present and discuss the latest advancements on
      GNNs and general AI/ML on graphs applied to networking problems.
      GNNet will bring together leaders from academia and industry to
      showcase recent methodological advances of GNNs and their
      application to networking problems, covering a wide range of
      applications and practical challenges for large-scale training and
      deployment.</span><br>
      <br>
    <span lang="EN-US">We expect GNNet would serve as the meeting point
      for the growing community on this fascinating domain, which has
      currently not a specific forum for sharing and discussion.</span><br>
      <br>
    <span lang="EN-US">The GNNet workshop seeks for contributions in the
      field of GNNs and graph-based learning applied to data
      communication networking problems, including the analysis of
      on-line and off-line massive datasets, network traffic traces,
      topological data, cybersecurity, performance measurements, and
      more. GNNet also encourages novel and out-of-the-box approaches
      and use cases related to the application of GNNs in networking.
      The workshop will allow researchers and practitioners to discuss
      the open issues related to the application of GNNs and graph-based
      learning to networking problems and to share new ideas and
      techniques for big data analysis and AI/ML in data communication
      networks.</span><br>
       <span lang="EN-US"></span><br>
    <br>
    <span lang="EN-US">TOPICS OF INTEREST</span><br>
    <span lang="EN-US">=================</span><br>
    <span lang="EN-US">We encourage both mature and positioning
      submissions describing systems, platforms, algorithms and
      applications addressing all facets of the application of GNNs and
      Machine learning on graphs to the analysis of data communication
      networks. We are particularly interesting in disruptive and novel
      ideas that permit to unleash the power of GNNs in the networking
      domain. The following is a non-exhaustive list of topics:</span><br>
      <span lang="EN-US"></span><br>
    <ul style="margin-top:0cm" type="disc">
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">GNNs and graph-based learning in
          networking applications</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">Representation Learning on
          networking-related graphs</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">Application of GNNs to network
          and service management</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">Application of GNNs to network
          security and anomaly detection</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">Application of GNNs to detection
          of malware, botnets, intrusions, phishing, and abuse detection</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">Adversarial learning for
          GNN-driven networking applications</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">GNNs for data generation and
          digital twining in networking</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">Temporal and dynamic GNNs in
          networking</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">Graph-based analytics for
          visualization of complex networking applications</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">Libraries, benchmarks, and
          datasets for GNN-based networking applications</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">Scalability of GNNs for
          networking applications</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">Explainability, fairness,
          accountability, transparency, and privacy issues in GNN-based
          networking</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l2
        level1 lfo1"><span lang="EN-US">Challenges, pitfalls, and
          negative results in applying GNNs to networking applications</span></li>
    </ul>
       <br>
    <span lang="EN-US">SUBMISSION INSTRUCTIONS</span><br>
    <span lang="EN-US">=======================</span><br>
    <span lang="EN-US">Submissions must be original, unpublished work,
      and not under consideration at another conference or journal.
      Submitted papers must be at most six (6) pages long, including all
      figures, tables, references, and appendices in two-column 10pt ACM
      format. Papers must include authors names and affiliations for
      single-blind peer reviewing by the PC. Authors of accepted papers
      are expected to present their papers at the workshop.</span><br>
      <br>
    <span lang="EN-US">All accepted papers will be included in the
      conference proceedings and be made available in the ACM Digital
      Library.</span><br>
       <br>
    <span lang="EN-US">WORKSHOP CHAIRS</span><br>
    <span lang="EN-US">================</span><br>
    <ul style="margin-top:0cm" type="disc">
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l1
        level1 lfo2"><span lang="EN-US">Pere Barlet-Ros, BNN-UPC, Spain</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l1
        level1 lfo2"><span lang="EN-US">Pedro Casas, AIT, Austria</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l1
        level1 lfo2"><span lang="EN-US">Franco Scarselli, University of
          Siena, Italy</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l1
        level1 lfo2"><span lang="EN-US">Xiangle Cheng, Huawei, China</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l1
        level1 lfo2"><span lang="EN-US">Albert Cabellos, BNN-UPC, Spain</span></li>
    </ul>
    <br>
    <span lang="EN-US"> PROGRAM COMMITTEE</span><br>
    <span lang="EN-US">===================</span><br>
    <ul style="margin-top:0cm" type="disc">
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Lilian Berton, University of Sao
          Paulo, Brazil</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Albert Bifet, Télécom ParisTech
          & University of Waikato, New Zealand</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Laurent Ciavaglia, Rakuten,
          Japan</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Constantine Dovrolis, Georgia
          Tech, USA</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Lluís Fàbrega, UdG, Spain</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Jerome François, INRIA, France</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Fabien Geyer, Technical
          University of Munich, Germany</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Matthias Herlich, Salzburg
          Research, Austria</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Zied Ben Houidi, Huawei
          Technologies, France</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Wolfgang Kellerer, Technical
          University of Munich, Germany</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="ES">Federico Larroca, Universidad de la
          República, Uruguay</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Alina Lazar, Youngstown State
          University, USA</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Gonzalo Mateos, University of
          Rochester, USA</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Christoph Neumann, Broadpeak,
          France</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Diego Perino, Telefonica
          Research, Spain</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Alejandro Ribeiro, University of
          Pennsylvania, USA</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Dario Rossi, Huawei
          Technologies, France</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Krzysztof Rusek, AGH University
          of Science and Technology, Poland</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">José Suárez-Varela. BNN-UPC,
          Spain</span></li>
      <li class="MsoListParagraph" style="margin-left:0cm;mso-list:l0
        level1 lfo3"><span lang="EN-US">Stefano Traverso, Ermes Cyber
          Security, Italy</span></li>
    </ul>
    <p>Thanks,</p>
    <p>Jordi Paillissé<br>
    </p>
  </body>
</html>