

A Look at a Root Cause for DNS Latency

What frustrates Internet users most? Slow DNS

The Problem

What Frustrates Internet Users Most?

High DNS latency
Due to routing, slowing
down experiences

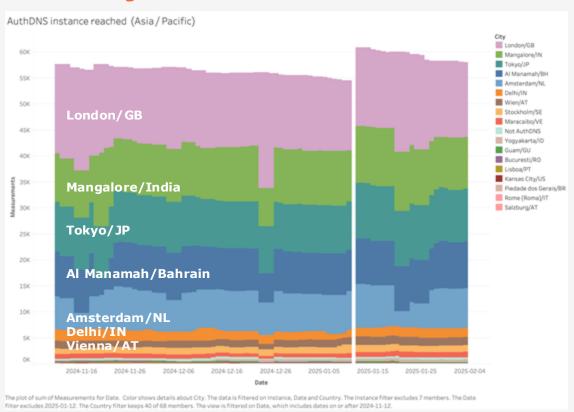
Traffic is not local
Slow response due to
detour around the world

How Is RIPE NCC's AuthDNS Reached from Asia Pacific?

1.	Target: RIPE NCC AuthDNS service
2.	From 1481 probes in Asia Pacific
3.	DNS and NSID measurements
4.	We got replies from 1263 probes
5.	You can do this too!

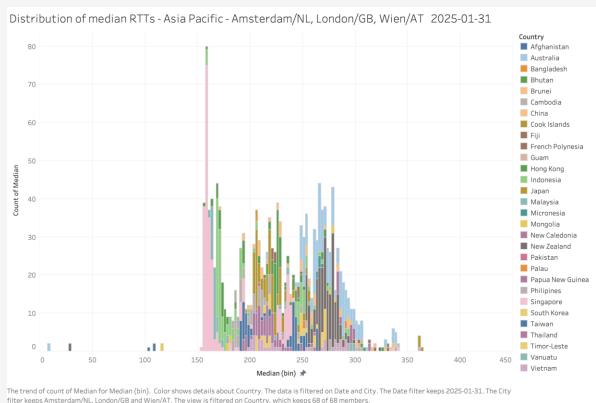
81884795	Pacific And Oceania	2024-11-11 14:01:21 2025-01-10			
00:00:00					
81884639	SouthEastAsia	2024-11-11 13:59:19 2025-01-10			
00:00:00					
81884620	SouthAsia	2024-11-11 13:59:06 2025-01-10			
00:00:00					
81884592	EastAsia	2024-11-11 13:58:46 2025-01-10			
00:00:00					
00054400	Courth Foot Asia , Oss	ania 2025 04 42 22:04:44 2025 02 04			
	SouthEastAsia+Oce	ania 2025-01-12 23:01:41 2025-03-04			
00:00:00	Foot and Courth Asia	2025 04 42 22 50 42 2025 02 04			
	East-and-South-Asia 2025-01-12 22:58:42 2025-03-04				
00:00:00	- win - w - 4 /	nto (
https://atlas.ripe.net/measurements/					

Measurement period


msm-id

Region

Let's Take a Closer Look


Which node gives the most answers?

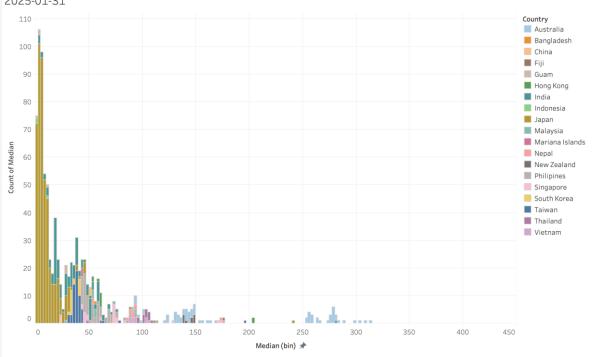
Most queries got answers from outside the region like Europe and Middle East

Let's Analyse:

RTT answer from AuthDNS nodes in Europe on 31/01/25

Asia Pacific to Europe

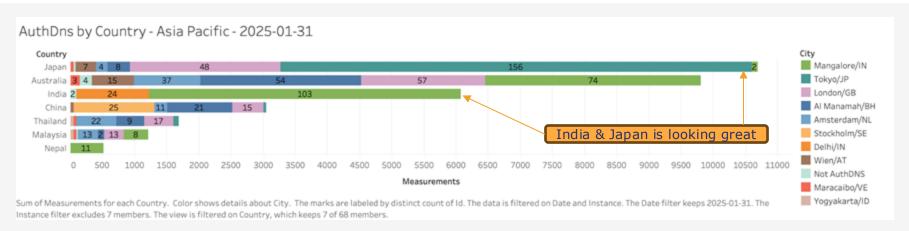
- RTTs to Europe generally are in the 150ms-300ms range
- The three Afghan probes are closer to 100ms
- Two probes which we thought be in AU / NZ have RTTs to London/Amsterdam that are far too low for the distance; those likely have wrong (user supplied) coordinates


filter keeps Amsterdam/NL, London/GB and Wien/AT. The view is filtered on Country, which keeps 68 of 68 members.

Let's Analyse:

RTT answer from AuthDNS nodes in Asia Pacific on 31/01/25

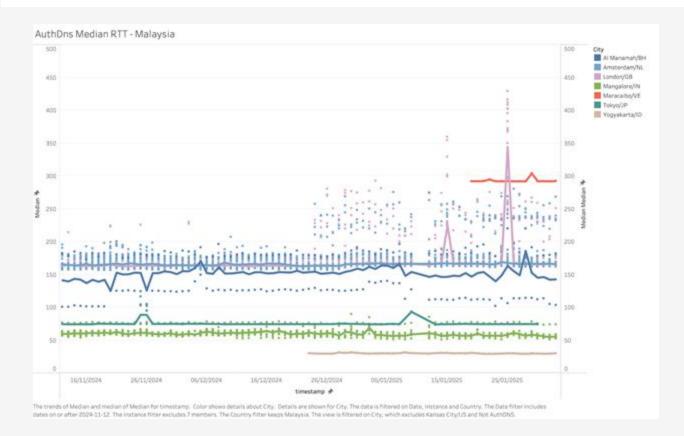
The trend of count of Median for Median (bin). Color shows details about Country. The data is filtered on Date and City. The Date filter keeps 2025-01-31. The City filter keeps Delhi/IN, Guam/GU, Mangalore/IN, Tokyo/JP and Yogyakarta/ID. The view is filtered on Country, which keeps 68 of 68 members.


Within Asia Pacific

 RTTs from Asia probes to Asian AuthDNS are mostly below 80ms, but for some countries they are higher;
 Thailand, Vietnam, Nepal and especially Australia / New Zealand

Let's Analyse:

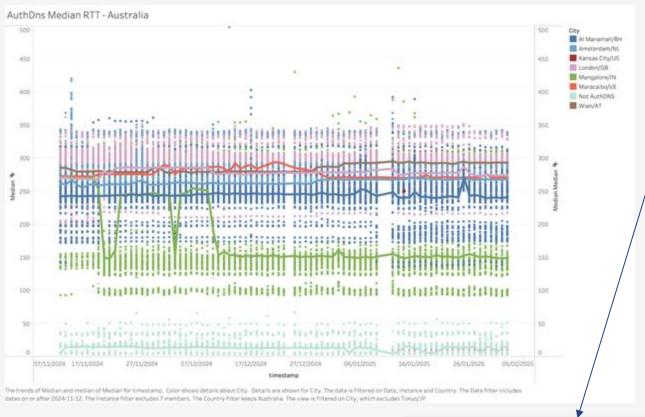
Which node answered DNS queries from certain economies?



World tour

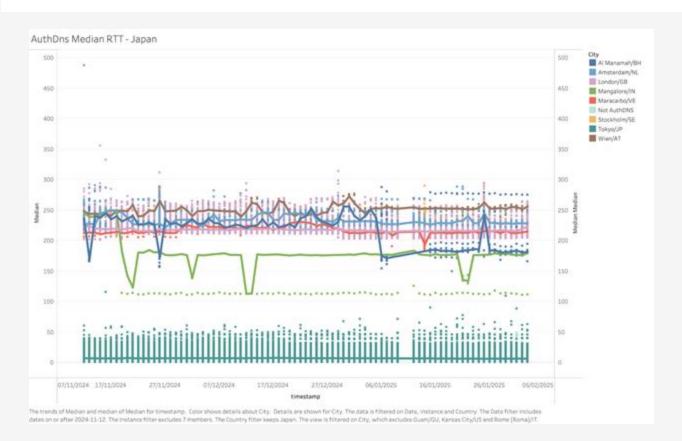
- We have 2 nodes in Japan, some of the probes still prefer to go to London and Amsterdam and 1 to Venezuela
- Australia: No AuthDNS node some got answer from Bahrain, GB, India, or Venezuela
- Thailand and Malaysia: No AuthDNS node some got answer from Bahrain, GB, India and Venezuela
- China: Most probes prefers to go to Europe or Bahrain
- India: 2 local nodes in Delhi and Mangalore 95% of the probes go answer locally
- Nepal: All the probes got answer from India

Let's Zoom in Malaysia:



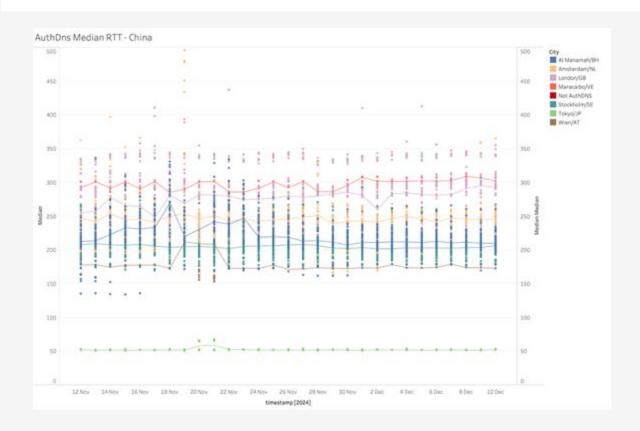
- Best performance: Answer from closest nodes in Yogyakarta at CitraWeb 25ms (1), followed by Tokyo, Japan(1), and Mangalore, India(8), under 80ms
- Highest latency coming from Amsterdam(13) and London(13) nodes 150-250ms
- Recommendation: Place a node in a strategic location in Malaysia.

Let's Zoom in Australia:



- Most probes in Australia get answers from nodes in Europe
- Best performance: Answer from not AuthDNS (4) and node in India (74)
- Highest latency coming from Amsterdam and London (109) nodes 250-350ms
- Recommendation: Place a node in a strategic location in Australia

Let's Zoom in Japan:



- Most probes (156) get answers from local nodes in Japan
- Best performance: Answer from 2 nodes in JPIX & JPNAP under 50ms
- Highest latency: 48 probes get answer from London node 200-250ms and around 20 probes get answer from various nodes
- Recommendation: Place a node in a strategic location in Japan or improve peering policy

Let's Zoom in China:

- Tokyo nodes have the lowest RTT 50ms (1)
- Highest Latency: In the range 150-350ms probes get answers from several Authdns nodes mostly in Europe(52) and some from Bahrain(21)
- Recommendation: Place a node in a strategic location in China.

The Solution

Keeping Traffic Local with AuthDNS

Contribution Anycasted servers can be hosted in more networks.

Security

- Local AuthDNS is a machine that announces the AuthDNS prefixes.
- It helps reduce path lengths for your network and peers.

What is AuthDNS?

AuthDNS is an authoritative DNS server responsible for serving various DNS zones

- Zones served:
 - ripe.net,
 - in-addr.arpa,
 - ip6.arpa
 - RIR Zones: RIPE NCC + other RIR **reverse DNS** zones (*crucial service*)
 - ccTLDs for smaller TLDs: SY, JO, PS, etc (and others)
- Low Effort, High Impact: You provide the server, RIPE NCC handles the rest.
- **Risk**: AuthDNS is similar to any BGP peer you add
- Most benefit from adding an AuthDNS server in: AU, SG, NZ, ID, CN, PH, HK, TW, TH, KR, MY, VN, NP
- **For who**? Big ISPs or parties offering an IXP port

RIS for Routing Issues/Anomaly Detection

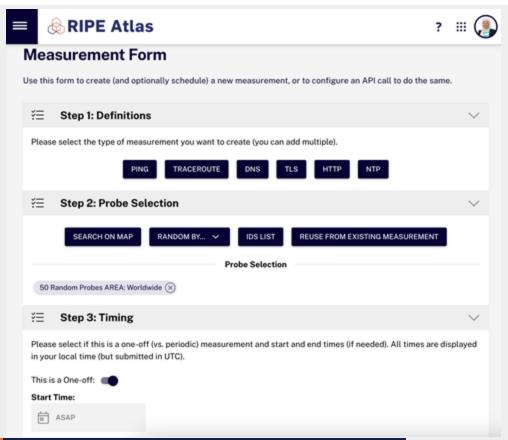
RIS: Routing Information Service

Hey RIS, is my Prefix announced in Malaysia on November 10?

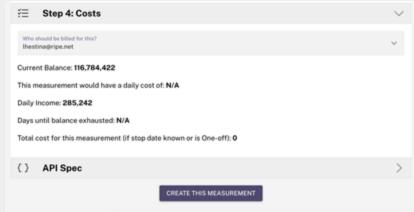
- RIS allows Researchers to detect possible attacks. Find out using
 - RIPEstat: RIPEstat uses RIS routing data for network insights & diagnostic
 - RIS Live: Live BGP announcements
 - Open source that relies on our services: BGPalerter, ...
- Action: Peer* with RIS and work together for better visibility and a more secure routing
- Which economies are far from our infrastructure:
 - KI, NR, AF, NU, FM, TO, NF, VU, SB, PW, FJ, PG, BV, NZ, TK, NC,
 - TH, MM, TL
 - BD, PK, NP
 - TW, KR, IN, CN, MN
- Which Networks:

https://observablehq.com/@emileaben/whatpeers-would-decrease-as-distance-to-ris-most

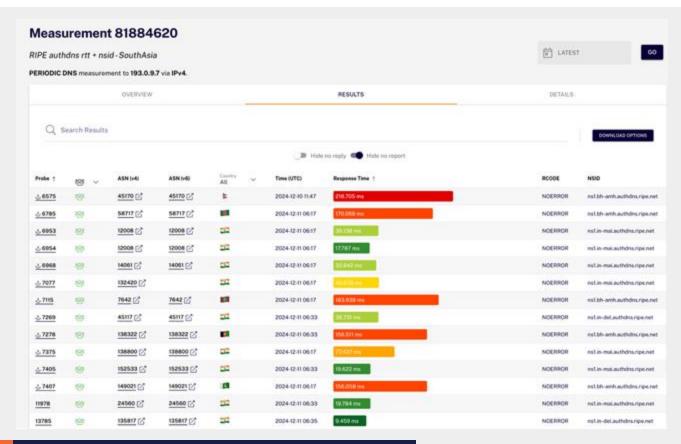
Hand-On Solution - Be Proactive with RIPE Atlas


Global network of sensors monitoring Internet paths in real time

Try It Yourself: Create a Measurement



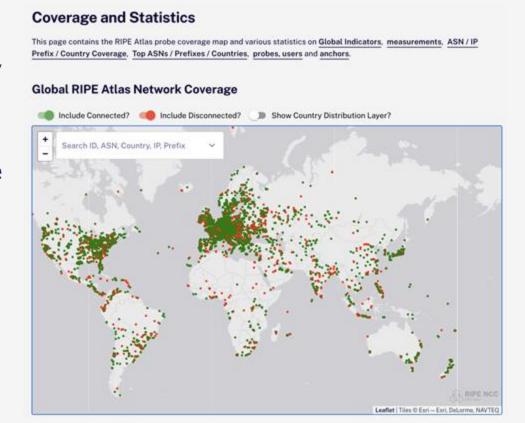
https://atlas.ripe.net/measurements/form/


- 1. Create a RIPE NCC SSO account
- 2. Redeem 200K credits APRICOT2025
- 3. Get started:

Analysing Results

RIPE Atlas Coverage Density

Europe



RIPE Atlas in the Asia Pacific region

How you can help

- Extremely low coverage in many economies, we need:
 - More topological diversity
 - Especially:
 - More diversity in network & type of location:
 - end user vs. core
 - More in eyeball networks
 - Paths via IXPs

Supporting RIPE NCC Research Reports on Internet events

RIPE NCC research into outages, hijacks, and events that damage the Internet

Recent analysis of **Baltic Sea cable cuts at end of 2024** drawing on data from
RIPE Atlas anchors

Read the full analysis on RIPE Labs

RIPE Atlas Anchors Use Case: Submarine Cable Cuts

Does the Internet route around damage?

- On 16 November a submarine cable got cut, on 17 November another one
- Did the Internet route around this damage?
- We used RIPE Atlas Anchors to investigate:
 - https://labs.ripe.net/author/emileaben/does

 the-internet-route-around-damage-baltic-sea-cable-cuts/
- Findings:
 - No increased packet loss
 - 20-30% of paths had increased latency (0-20ms)

RIPE Atlas Anchor Deployment

Help us deploy RIPE Atlas Anchors!

The Baltic Sea Cable cuts analysis was possible because a sufficient number of RIPE Atlas Anchors was deployed in the region (on both sides of the cables).

We consider 5 RIPE Atlas Anchors with enough diversity to be the minimum on each side.

Check out this page to see if your country needs more anchors for this type of measurement:

https://sgpub.ripe.net/emile/tmp/cc2anchor.csv

East Asia	Southeast Asia	South Asia
Mongolia	Brunei	Bhutan
China	Cambodia	Sri Lanka
South Korea	Laos	Nepal
Taiwan	Myanmar	Pakistan
	Timor Leste	Afghanistan
	Malaysia	Bangladesh
	Philippines	Maldives
	Thailand	
	Vietnam	

Summary

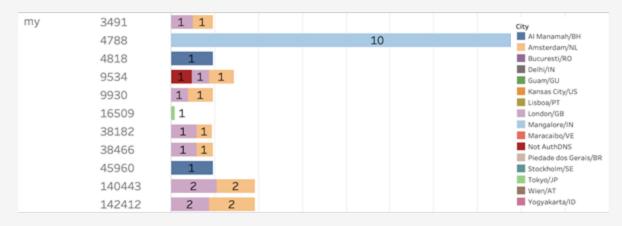
- **Problem**: Slow DNS response times frustrate internet users
- Cause: High latency due to inefficient routing, with traffic often travel not locally
- Solution:
 - Keep DNS traffic local by hosting more AuthDNS (anycasted DNS servers)
 - Host more RIPE Atlas in diverse location to provide real time view on the field
 - Use RIS data (and peer with RIS*) to mutually help detects BGP hijacks or misconfiguration across networks
- Benefit: Local DNS reduces latency, improve user experience, and enhances security by reducing paths lengths and hijack risks
- **Tools**: Use RIPE Atlas for measuring DNS latency and assessing route inefficiencies.
- Deployment: Target economies to improve local DNS infrastructure include: AU, SG, NZ, CN, ID, PH, TW, HK, TH and more .
- Call to action per country recommendation

Sources

- RIPE Atlas Measurement Result: https://atlas.ripe.net/measurements/81446294/
- RIS How far is Internet from our infrastructure: https://observablehq.com/@emileaben/what-peers-would-decrease-as-distance-to-ris-most
- Baltic Cable Cut: https://labs.ripe.net/author/emileaben/does-the-internet-route-around-damage-baltic-sea-cable-cuts/
- AuthDNS analysis: https://labs.ripe.net/author/anandb/reaching-authdns-a-ripe-atlas-analysis-by-region/

Recommendations: Malaysia

RIPE Atlas


- We want to distribute probes to:
 - 10030 CELCOMNET-AP
 - 38466 UMOBILE-AS-AP
 - 45960 YTLCOMMS-AS-AP
 - 38322 TTSSB-MY
 - 56231 ASTRO-MY-AS-AP
 - 45410 ALLOTECH-AS-MY
- Where?
 - End user network
 - Core network
 - (close to) IXPs

AuthDNS

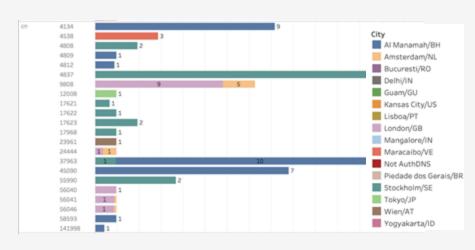
- Host AuthDNS in:
 - IXP
 - AS4788
 - AS9534

Network Operator

• Evaluate the paths from your network to key infrastructure

Recommendations: China

RIPE Atlas


- We want to distribute probes to:
 - 24400 CMNET-V4Shanghai
 - 56048 CMNET BEIJING
 - 24445 CMNET-V4Henan
- Where?
 - End user network
 - Core network
 - (close to) IXPs

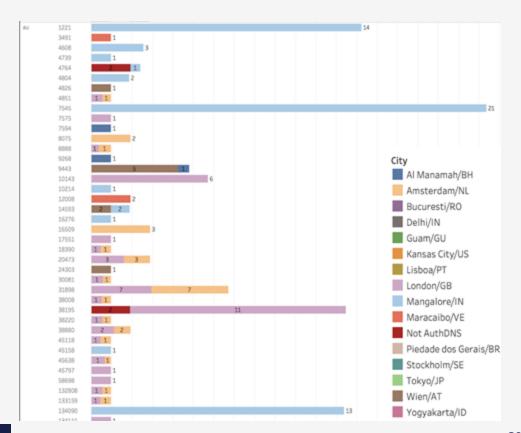
RIS & AuthDNS

- Networks that will improve hops to RIS infrastructure:
 - IXP route servers
 - 9808
 - 4837
 - 4134
 - 58453
 - 4538
 - 56047
- Host AuthDNS in:
 - China IX?
 - AS4134
 - AS4837
 - AS9808

Network Operator

Evaluate the paths from your network to key infrastructure

Recommendations: Australia



RIS & AuthDNS

- Host AuthDNS in:
 - o IXP
 - o AS1221

Network Operator

Evaluate the paths from your network to key infrastructure

Recommendations: Indonesia

RIPE Atlas

- We want to distribute probes to:
 - 23693 TELKOMSEL-ASN-ID
 - 24203 NAPXLNET-AS-ID
 - 45727 THREE-AS-ID
 - 18004 WIRELESSNET-ID
 - 9341 ICONPLN-ID-AP
 - 63859 MYREPUBLIC-AS-ID
- Where?
 - End user network
 - Core network
 - (close to) IXPs

RIS & AuthDNS

- Host one more AuthDNS in:
 - AS7713
 - AS23693
 - IIX or IXP

Network Operator

 Evaluate the paths from your network to key infrastructure

Questions & Comments

THANK YOU!

AS path from AuthDNS side

AS-path from Guam IX AuthDNS node to Atlas Anchor #7009

```
ns1.gu-gum.authdns.ripe.net# show ip bgp 45.94.14.204
BGP routing table entry for 45.94.14.0/24, version 63919178
Paths: (1 available, best #1, table default)
Not advertised to any peer
152735 7131 701 3257 8895 8895 208520, (aggregated by 208520 45.94.12.1)
103.142.153.1 from 103.142.153.1 (103.142.152.254)
Origin IGP, valid, external, atomic-aggregate, best (First path received)
Community: 65000:7131
Last update: Wed Nov 20 13:47:46 2024
```