Policy Certification and Verification for Cybersecurity in the IoT

Anna Maria Mandalari

Why were we interested in this?

They may listen to you (e.g., smart speakers)

A global teal

assistant res TO SD

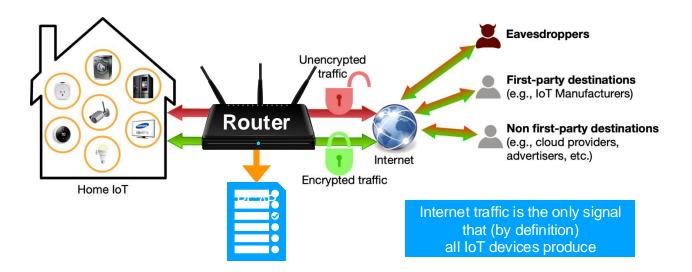
 They can (by definition) access the Internet and therefore may expose private information

ey may know what vatch (e.g., smart TVs)

 Lack of understanding on what information they expose, on when they expose it, and to whom

rt TV Snooping Features

looping Features


Lack of understanding of regional differences (e.g., GDPR)

technology called ACR. Here's how to turn it off.

210 devices in different countries

Data Collection Methodology

- Monitor all traffic at the <u>router</u>
 - per-device
 - per-experiment

Motivation


• In 2023 the Cyber Resilience Act (in EU) and the US Cyber Trust Mark (in US) make further step towards a certification program of smart devices

• For consumer IoT devices, the certification process is thought as a <u>self-assesment</u> performed by the vendors themselves

• Should we trust vendors?

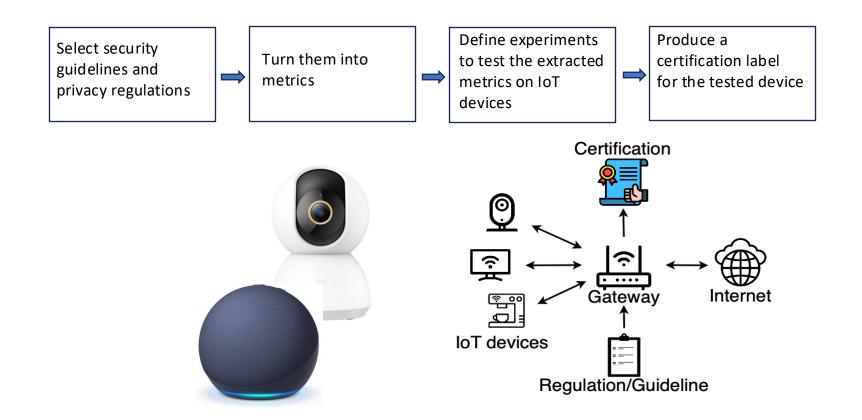
Solution at the Edge

/ Generalizable

/ Self adaptive

/ Accurate IoT blocker

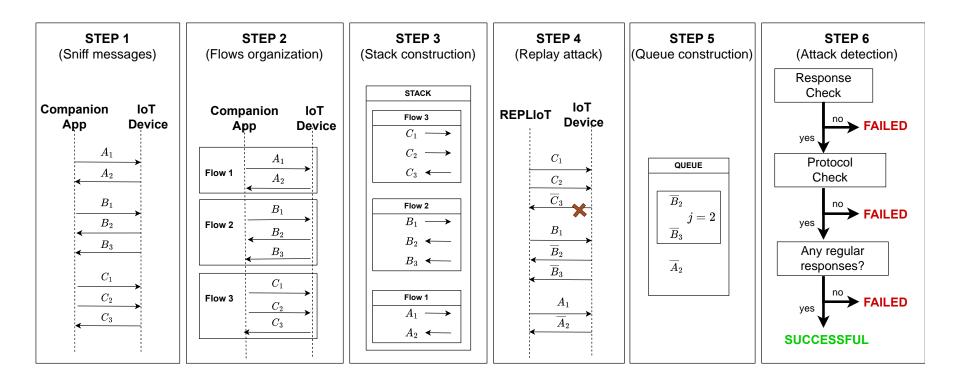
Compliance-Oriented IoT Security and Privacy Evaluation Framework

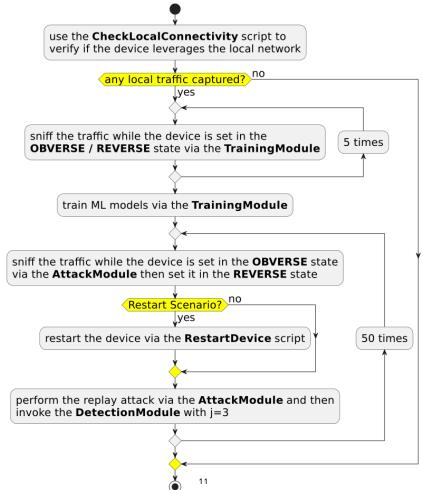

Cybersecurity guidelines* such as ENISA, NIST, *IoT Regulation Policy (UAE)* have been released for improving IoT design practice

Privacy regulations** such as GDPR (in EU) and CCPA (in California)

There is a lack of understanding whether IoT devices comply with them

*NOT mandatory **Mandatory


Methodology


Results

Device	# of Unused Open Ports	# of Unrecognized Protocols	Compliant with GDPR Art. 32 (a)
Bose Speaker	(11 ports)	(0 protocols)	\checkmark
Echo Dot 5	(5 ports)	X(3 protocols)	\checkmark
Furbo Dog Camera	(0 ports)	(1 protocol)	\checkmark
Google Nest Cam	X (3 ports)	(1 protocol)	
Govee lights	(0 ports)	(0 protocols)	
Ring Video Doorbell	(0 ports)	(2 protocols)	
Sensibo Sky Sensor	(0 ports)	(0 protocols)	
SimpliSafe Cam	(1 ports)	(0 protocols)	× ×
Sonos One	(5 ports)	(1 protocol)	(mac in the clear)
WeeKett Kettle	(1 ports)	(2 protocols)	V

Methodology

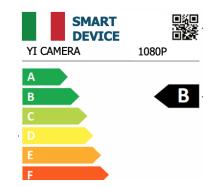
Using ML for inferring IoT behavior

Results

REPLAY ATTACK RESULTS. \checkmark INDICATES WHETHER THE REPLAY ATTACK IS SUCCESSFUL OR NOT (X).

Device (*Tested via APIs)	Non-Restart	Restart
	Scenario	Scenario
Yeeligth lightstrip	\checkmark	\checkmark
Yeelight bulb	\checkmark	\checkmark
Wiz ligthbulb	\checkmark	\checkmark
Lifx bulb	\checkmark	\checkmark
Lepro bulb	\checkmark	\checkmark
Govee lightstrip *	\checkmark	\checkmark
Nanoleaf triangle *	\checkmark	\checkmark
Tapo smartplug	\checkmark	X
Meross smartplug	\checkmark	\checkmark
WeeKett Kettle	\checkmark	\checkmark
Eufy robovac 30C	\checkmark	\checkmark
OKP vacuum	\checkmark	\checkmark
iRobot roomba i7	X	X
Sonos Speaker *	\checkmark	\checkmark
Bose Speaker *	\checkmark	\checkmark
Wyze cam pan	X	X
Vtech baby monitor	X	X
Boyfun Baby monitor	X	X
Furbo camera	X	X
Meross Garage Opener	\checkmark	\checkmark

What's Next?


Privacy Preserving IoT Security Management

- Real industrial gateway
- Real-world trial

Mitigation

- Open source software
- Third party certification
- Manufactures Guidelines

- Privacy and Security Label/Certification
- Privacy and security by default
- IETF/ETSI Standard

Our Team

Anna Maria Mandalari

Assistant Professor University College London

Honorary Research Fellow at Imperial College London

Fabio Palmese

Senior Developer

Hamed Haddadi

Professor in Human-Centred Systems at Imperial College London

Follow us: @iotrim @ammandalari <u>mulini.eu</u>