
IPv6 Security
 Training Course

Exercise Booklet

July 2024

IPv6 Security Training Course

Enter the Lab Environment
Open a browser and go to https://workbench.ripe.net

The trainer will tell you which lab to use:

Your username is your number on the participant list.

The password will be given by the trainer.

Look for the “New IPv6 Security” lab and click on the Access button.

You will see a web page with three terminals available. Each terminal
corresponds to one of the hosts we will use for the exercises.

July 2024	 	 	 	 	 	 	 	 	 	 2

Username

Password

Log in

Please login with details provided by the trainer

https://workbench.ripe.net

IPv6 Security Training Course

Exercise 2.1: IPv6 Packet Generation
In this exercise you will learn:

• The basics of the Scapy tool [1][2]

• To generate tailor-made IPv6 packets

1. The lab network

To login into the Hosts:

	 user:		 	 root
password:	 	 ipv6security

The diagram shows the lab topology, composed by the hosts A, B and C.
They are all connected to the same network and isolated from the Internet.

Pay attention to the addressing used on your lab.We use the network prefix
2001:DB8:F:X::/64. Replace the X for your number on the participant list.

Use ip addr show command to check what are the host’s addresses.Take
note of the MAC, link-local and global unicast IPv6 addresses of each host.

Host A Host B Host C

MAC

Link-Local

Global Unicast

July 2024	 	 	 	 	 	 	 	 	 	 3

IPv6 Security Training Course

2. The Scapy Tool

Scapy is a powerful interactive packet manipulation program.

We will show the basics of Scapy and its IPv6 functionality. For more details,
go to the annex at the end of this booklet or to the official documentation
website [2].

a) To access the Scapy shell, go to Host C terminal and type:

root@u01-hostC:/# scapy

INFO: Can't import PyX. Won't be able to use psdump() or pdfdump().

 aSPY//YASa

 apyyyyCY//////////YCa |

 sY//////YSpcs scpCY//Pp | Welcome to Scapy

 ayp ayyyyyyySCP//Pp syY//C | Version 2.5.0

 AYAsAYYYYYYYY///Ps cY//S |

 pCCCCY//p cSSps y//Y | https://github.com/secdev/scapy

 SPPPP///a pP///AC//Y |

 A//A cyP////C | Have fun!

 p///Ac sC///a |

 P////YCpc A//A | Craft packets like I craft my beer.

 scccccp///pSP///p p//Y | -- Jean De Clerck

 sY/////////y caa S//P |

 cayCyayP//Ya pY/Ya

 sY/PsY////YCc aC//Yp

 sc sccaCY//PCypaapyCP//YSs

 spCPY//////YPSps

 ccaacs

 using IPython 8.25.0

>>>

NOTE: You can ignore the warning messages.

b) To create an IPv6 packet, define some parameters, and check how it looks
like:

>>> a=IPv6()

>>> a

<IPv6 |>

>>> a.dst="2001:db8:a:b::123:321:101"

July 2024	 	 	 	 	 	 	 	 	 	 4

IPv6 Security Training Course

>>> a

<IPv6 dst=2001:db8:a:b:0:123:321:101 |>

>>> a.src="2001:db8:1::A101"

>>> a.show()

###[IPv6]###

 version= 6

 tc= 0

 fl= 0

 plen= None

 nh= No Next Header

 hlim= 64

 src= 2001:db8:1::a101

 dst= 2001:db8:a:b:0:123:321:101

With the a.show() function you can see the details of the packet a we have
generated. You can use any name you want.

c) To concatenate different packet layers

Use the / operator to concatenate different layers when you create your
packet.

Some fields can change automatically when you add another layer. For
example, the next header field will change to reflect the added upper layer
(you still can change the value to whatever you want).

Here we create a packet b with source and destination addresses.

We also concatenate the ICMPv6 Neighbour Advertisement layer using the
ICMPv6ND_NA() function.

>>> b=IPv6(src="2001:db8:5::5",dst="ff02::1")/ICMPv6ND_NA()

>>> b

<IPv6 nh=ICMPv6 hlim=255 src=2001:db8:5::5 dst=ff02::1 |<ICMPv6ND_NA |>>

>>> b.show()

###[IPv6]###

 version= 6

 tc= 0

 fl= 0

 plen= None

 nh= ICMPv6

 hlim= 255

 src= 2001:db8:5::5

 dst= ff02::1

July 2024	 	 	 	 	 	 	 	 	 	 5

IPv6 Security Training Course

###[ICMPv6 Neighbor Discovery - Neighbor Advertisement]###

 type= Neighbor Advertisement

 code= 0

 cksum= None

 R= 1

 S= 0

 O= 1

 res= 0x0

 tgt= ::

d) To send an IPv6 packet to the network

Use the send() function to send packets on layer 3. Scapy handles routing
and layer 2 for you.

The send() function also accepts additional parameters. In this example we
send three (3) packets with an interval of five (5) seconds.

>>> send(a)

.

Sent 1 packets.

>>> send([a,b])

..

Sent 2 packets.

>>> send(b, inter=5, count=3)

...

Sent 3 packets.

NOTE: to get more information on available parameters use help(send).

e) To send and receive packets

Scapy allows you to also send-and-receive. In this example we send an
ICMPv6 Echo Request to the IPv6 address of the router (2001:db8:F:X::1).

>>> c=IPv6(dst="2001:db8:F:x::1")/ICMPv6EchoRequest()

>>> ans,unans = sr(c)

Begin emission:

Finished sending 1 packets.

.*

Received 2 packets, got 1 answers, remaining 0 packets

July 2024	 	 	 	 	 	 	 	 	 	 6

IPv6 Security Training Course

>>> ans.summary()

IPv6 / ICMPv6 Echo Request (id: 0x0 seq: 0x0) ==> IPv6 / ICMPv6 Echo Reply (id:
0x0 seq: 0x0)

>>> srloop(c)

RECV 1: IPv6 / ICMPv6 Echo Reply (id: 0x0 seq: 0x0)

RECV 1: IPv6 / ICMPv6 Echo Reply (id: 0x0 seq: 0x0)

RECV 1: IPv6 / ICMPv6 Echo Reply (id: 0x0 seq: 0x0)

RECV 1: IPv6 / ICMPv6 Echo Reply (id: 0x0 seq: 0x0)

RECV 1: IPv6 / ICMPv6 Echo Reply (id: 0x0 seq: 0x0)

RECV 1: IPv6 / ICMPv6 Echo Reply (id: 0x0 seq: 0x0)

The sr() function sends the packet(s) received as a parameter and waits for
the answer(s).The output you may get can differ from the image above, since
sr() listens for ALL the packets on the link and might capture more packets
than were sent. It returns two lists. The first list contains the pairs of packet
sent and the received answer. The second list contains the unanswered
packets.

NOTE: You see that the source address is automatically set to match the
destination address you have configured for the IPv6 packet.

The srloop() function does the same as sr(), but more than once. It keeps
sending and receiving until you stop it using Ctrl+c.

July 2024	 	 	 	 	 	 	 	 	 	 7

IPv6 Security Training Course

3. IPv6 Packet Generation

With what you have learned in the previous section, you should be able to do
the following exercise by yourself:

Send an ICMPv6 echo request from Host C to Host A.

Capture packets on Host A to see if they receive the echo request and if they
send the echo reply.

To capture packets in Scapy, use the sniff() function. Start Scapy on Host A:

To start capturing IPv6 packets:

Wait for at least 10 seconds. Stop capturing using Ctrl+c.

To see the captured packets, use pkts.show()

You should see something similar to:

>>> pkts.show()

0000 Ether / IPv6 / ICMPv6 Echo Request (id: 0x0 seq: 0x0)

0001 Ether / IPv6 / ICMPv6 Echo Reply (id: 0x0 seq: 0x0)

4. Exit Scapy

To exit from Scapy interpreter just type exit(), or use Ctrl+D. 

July 2024	 	 	 	 	 	 	 	 	 	 8

scapy

>>> pkts=sniff(iface="eth0",lfilter = lambda x: x.haslayer(IPv6))

IPv6 Security Training Course

Exercise 2.2: IPv6 Network Scanning
In this exercise we introduce two new toolsets:

1. THC-IPV6 [3]: Complete tool set to attack the inherent protocol
weaknesses of IPv6 and ICMPv6, and includes an easy to use packet
factory library.

2. The IPv6 Toolkit [4]: Set of IPv6 security assessment and trouble-
shooting tools. It can be leveraged to perform security assessments of
IPv6 networks, assess the resiliency of IPv6 devices by performing real-
world attacks against them, and to troubleshoot IPv6 networking
problems.

Both toolsets have many different tools (i.e. binaries). In this exercise we will
use the ones available to find out IPv6 addresses on the network.

a) THC-IPV6 has a tool called alive6

To scan your network, go to Host C terminal and type:

alive6 eth0

Optional: You can capture packets from another host, A or B, to see how
alive6 tries to discover hosts on the subnet. You can use Scapy’s sniff()
function or tcpdump.

NOTE: All THC-IPV6 tools are in the folder /usr/local/bin/. You can take a
look at what other commands are available.

b) The IPv6 toolkit has a tool called scan6

To scan your network, go to Host C terminal and type:

scan6 -L -i eth0

Optional: You can capture packets from another host, A or B, to see how
alive6 tries to discover hosts on the subnet. You can use Scapy’s sniff()
function or tcpdump.

July 2024	 	 	 	 	 	 	 	 	 	 9

IPv6 Security Training Course

NOTE: All The IPv6 Toolkit tools are in the folder /usr/local/sbin/. You can
take a look at what other commands are available.

c) What are the differences you noticed between the two tools?

d) How could you make it more difficult for an attacker to discover your IPv6
addresses? 

July 2024	 	 	 	 	 	 	 	 	 	 10

IPv6 Security Training Course

Exercise 3.2-a: NDP Threats using NS/NA
This exercise focuses on the threats seen on the course slides related with
NS (Neighbour Solicitation) and NA (Neighbour Advertisement) messages.

The main goal is to learn how easy it is to poison the neighbour cache of an
IPv6 host using NS or NA messages.

We have here two exercises, one using NS and the other one using NA. You
have to do at least one of them.

1. Neighbour cache attack using NS

We will use Host C as the attacker, and two hosts that can be the target (A
and B). All have an IP and MAC addresses, the ones shown in the scheme
are just a reference, in this exercise use the real IPv6 and MAC addresses.

You can see the Neighbour Cache of the hosts using the linux command:

ip neighbour show

fe80:: ...

2001:db8:F:…

The attacker just has to send one packet (NS) to Host A, pretending to be
Host B using IPb as source address. Host A sees a NS coming from Host B,
asking for the MAC address of IPa.

July 2024	 	 	 	 	 	 	 	 	 	 11

IPv6 Security Training Course

The trick is in the Source Link-layer address option that is added to the
NS, where the attacker sends it’s own MAC address (cc:cc:cc:cc:cc:cc).
Host A will think that’s the MAC address of Host B and will update it’s
neighbour cache. Traffic from Host A to B will now be sent to the attacker
(redirect attack).

Note that if the attacker sends an invalid MAC address (not used in the
network) then it will be a DoS attack, because the traffic will reach no
destination at all.

a) From Host C (the attacker), using Scapy, send ICMPv6 NS messages to
Host A. In the following example replace IPb and IPa addresses for the
real Global Unicast Addresses used in the labs:

scapy

>>> a = IPv6(src="IPb", dst="IPa")

>>> b = ICMPv6ND_NS(tgt="IPa")

>>> c = ICMPv6NDOptSrcLLAddr(lladdr="cc:cc:cc:cc:cc:cc")

>>> pkt = a / b / c

>>> send(pkt)

b) Check the neighbour cache in Host A.

TIP: The effect of the NS fake message just last few seconds. You have to
quickly check the neighbour cache on Host A to see the results.

c) After sending the NS message to host A, are you able to ping from Host
A to Host B? (Use ping6 Linux command)

d) If the answer to previous question is no, how long does that effect lasts?
How can you make the attack permanent? Try to make it permanent.

e) Do you think it’s possible to make an MITM (Man-in-the-middle) attack
using this technique? How?

f) What will happen if instead of attacking the address of a host, you
attack the address of the router?

July 2024	 	 	 	 	 	 	 	 	 	 12

IPv6 Security Training Course

2. Neighbour cache attack using NA

The same effect can be achieved using the NA message. As described in the
course slides, IPv6 hosts should accept unsolicited NA messages and
update their neighbour cache accordingly.

We will use Host C as the attacker, and two hosts that can be the target (A
and B). All have an IP and MAC addresses, the ones shown in the scheme
are just a reference, in this exercise use the real IPv6 and MAC addresses.

You can see the Neighbour Cache of the hosts using the linux command:

ip neighbour show

fe80:: ...

The attacker just has to send one packet (NA) to Host A, pretending to be
Host B (Target Address is IPb). Host A sees an unsolicited NA coming from
Host B, informing about an update in the MAC address of IPb.

The trick is in the Target Link-layer address option that is in the NA, where
the attacker sends it’s own MAC address (cc:cc:cc:cc:cc:cc). Host A will
think that’s the MAC address of Host B and will update it’s neighbour cache.
Traffic from Host A to B will now be sent to the attacker (redirect attack)

Note that if the attacker sends an invalid MAC address (not used in the
network) then it will be a DoS attack, because traffic will reach no destination
at all.

July 2024	 	 	 	 	 	 	 	 	 	 13

IPv6 Security Training Course

a) From Host C (the attacker), using Scapy, send ICMPv6 NA messages to
Host A. In the following example replace IPb and IPa addresses for the
real ones used in the labs:

scapy

>>> d = IPv6(src="IPb", dst="IPa")

>>> e = ICMPv6ND_NA(R=0, tgt="IPb")

>>> f = ICMPv6NDOptDstLLAddr(lladdr="cc:cc:cc:cc:cc:cc")

>>> pkt2 = d / e / f

>>> send(pkt2)

b) Check the neighbour cache in Host A.

TIP: The effect of the NA fake message just last few seconds. You have to
quickly check the neighbour cache on Host A to see the results.

c) After sending the NA message to Host A, are you able to ping from Host
A to Host B? (Use ping6 Linux command)

d) If the answer to previous question is no, how long does that effect lasts?
How can you make the attack permanent? Try to make it permanent.

e) Do you think it’s possible to make an MITM (Man-in-the-middle) attack
using this technique? How?

f) What will happen if instead of attacking the address of a host, you
attack the address of the router? 

July 2024	 	 	 	 	 	 	 	 	 	 14

IPv6 Security Training Course

Exercise 3.2-b: NDP Threats using RS/RA
This exercise focuses on the threats seen on the course slides related with
RS (Router Solicitation) and RA (Router Advertisement) messages.

The main goal is to learn how easy it is to send RAs to configure different
network parameters in hosts in a network.

We have here three tasks, from which only the first one is mandatory. If you
have extra time you can try to do the last two optional tasks.

Before starting, check Host A network configuration, both the IPv6
addresses and routes:

ip addr show

ip -6 route show

1. RA with bogus address configuration prefix

Remember that:

• RAs are ICMPv6 messages sent to the all-nodes multicast address (ff02::1)

• To announce a prefix on a link and tell the hosts to use it to auto-configure
themselves you need to:

1. Set the RA flag M to 0 (M=0).

2. Add to the RA an ICMPv6 Prefix Information Option, that includes the
prefix length (64 bits), flags L (on-link prefix) and A (autonomous
address-configuration) set to one (L = 1; A = 1), and the prefix you
want to announce.

a) From Host C (the attacker), using Scapy, send ICMPv6 RA messages.

scapy

>>> g=IPv6(src="fe80::a:b:c:d",dst="ff02::1")

>>> h=ICMPv6ND_RA(M=0,O=0)

>>> i=ICMPv6NDOptPrefixInfo(prefixlen=64, prefix="2001:db8:bad:cafe::",L=1,A=1)

>>> pkt = g / h / i

>>> send (pkt)

.

Sent 1 packets.

July 2024	 	 	 	 	 	 	 	 	 	 15

IPv6 Security Training Course

In Scapy you have to add the different options you want to send inside the
RA. In the example we added the Prefix Information option. Other Options
are the router’s source Link-layer address (ICMPv6NDOptSrcLLaddr()),
recursive DNS Server (ICMPv6NDOptRDNSS()), or MTU (ICMPv6NDOptMTU()).

b) Check if Host A has auto configured an IPv6 address from the prefix you
announced.

ip addr show eth0

...

Which IID generation method(s) were used to generate the IID?

c) Do you see any other change in the network configuration of Host A? Try
this command:

ip -6 route show

d) How could you protect your hosts from these bogus RA messages?
Take note of the ideas you have here. We will see security solutions in
the course slides later.

July 2024	 	 	 	 	 	 	 	 	 	 16

IPv6 Security Training Course

Exercise 3.3: MLD
Remember that IPv6 hosts always have multicast addresses configured, and
that multicast is used a lot by IPv6 related protocols.

You can see the IPv6 multicast addresses your Linux host is using:

ip -6 mad

In this exercise we will use MLD messages to see practical examples of what
was explained in the course.

We will scan IPv6 Multicast addresses using MLDv2 messages crafted in
scapy.

First, enter scapy on Host C and create a tailor-made message:

>>> d = IPv6(dst="ff02::1",hlim=1)

>>> e = IPv6ExtHdrHopByHop(options = RouterAlert())

>>> f = ICMPv6MLQuery2()

>>> pktv2 = d / e / f

The message is composed of the Basic IPv6 Header (d) with the all-hosts
multicast address as the destination address with link scope and a Hop Limit
of 1, the Hop-by-Hop Extension Header with a Router Alert Option (e), and
the ICMPv6 MLD Query message-v2 (f).

Remember that you can see details using the show() function to check
whether everything is OK: pktv2.show()

a) To sent the MLD Query and capture all the MLD Reports on the same
Host C, use the following command:

>>> send(pktv2); pkts2=sniff(iface="eth0",lfilter = lambda x:x.haslayer(IPv6))

.

Sent 1 packets.

July 2024	 	 	 	 	 	 	 	 	 	 17

IPv6 Security Training Course

Using the previously created MLDv2 Query message, you concatenate two
Scapy commands using a semicolon ";". The first command sends the
packet and the second one captures packets in the interface eth0.

NOTE: Wait at least 10 seconds before stopping to capture using Ctrl+c. The
Maximum Response Delay field (mrd) in the MLD Query specifies the
maximum allowed delay before sending a responding Report in ms. By
default, it is set to 10 seconds by Scapy. This way you can make sure you
capture all the Reports sent by the hosts on the link.

You can use the summary() function to see the captured MLDv2 Reports.
You can see details of each message using the show() function.

>>> pkts2.summary()

Ether / fe80::a8c1:abff:fec3:2bb8 > ff02::16 (0) / IPv6ExtHdrHopByHop / ICMPv6MLReport2

Ether / fe80::a8c1:abff:febb:fb28 > ff02::16 (0) / IPv6ExtHdrHopByHop / ICMPv6MLReport2

Ether / fe80::a8c1:abff:fe53:d3ea > ff02::16 (0) / IPv6ExtHdrHopByHop / ICMPv6MLReport2

b) Optional: You can capture packets on Host A or Host B to see the 	
same exchange of MLD messages to find other hosts on the same
network.

Which type of ICMPv6 message were used? __________________

What are the IPv6 source and destination addresses used? ___________

What is the Hop Limit value used? ________________________

Is there any Extension Header? If so, does it include any IPv6 Option? _____

July 2024	 	 	 	 	 	 	 	 	 	 18

IPv6 Security Training Course

Exercise 4.1: IPv6 Packet Filtering
As we are using Linux hosts in our lab, we will use the ip6tables tool to
configure IPv6 packet filtering on them.

There are three different default “chains” in the packet processing for Linux:
INPUT, FORWARD, and OUTPUT. For the purposes of this exercise we will
only be concerned with the INPUT chain, the one that processes the packets
that enter into an interface.

1. Filtering Redirect messages

In this exercise we will use:

• Host A as the host to protect

• Host C as the attacker

a) In Host A, check global default filtering policy (is set to ACCEPT)

ip6tables -L -n

Chain INPUT (policy ACCEPT)

target prot opt source destination

b) Check the IPv6 route table on Host A

root@u01-hostA:/# ip -6 route show

2001:db8:f:1::/64 dev eth0 proto kernel metric 256 expires 86335sec pref medium

2001:db8:bad:cafe::/64 dev eth0 proto kernel metric 256 pref medium

fe80::/64 dev eth0 proto kernel metric 256 pref medium

default via fe80::a8c1:abff:fec3:2bb8 dev eth0 proto ra metric 1024 expires
535sec hoplimit 64 pref medium

default via fe80::a:b:c:d dev eth0 proto ra metric 1024 expires 17sec pref high

For a specific IPv6 address’ route, you can use:

ip -6 route get 2001:db8:BAD:DAD::1

2001:db8:BAD:DAD::1 via fe80::AB:a:F:12 dev eth0 proto ra src
2001:db8:F:29:5054:ff:feeb:5ada metric 1024 hoplimit 255

July 2024	 	 	 	 	 	 	 	 	 	 19

IPv6 Security Training Course

The result you see is showing that for that IPv6 address the next hop is the
default gateway’s link-local address. It also shows from where it was
learned, a Router Advertisement message (proto ra).

c) From Host C send an ICMPv6 Redirect message

Goal: Make packets from Host A towards the IPv6 address
2001:db8:BAD:DAD::1 to be sent to host C’s link-local address.

To send your Redirect message you need the following information:

<c.1> = As source IPv6 address: Router’s link-local address.

You can guess the local router link-local address sniffing packets on the link
(look for RAs), or finding out the default route on the hosts.

<c.2> = As destination IPv6 address: Victim host IPv6 address (Host A). Use
the GUA Address.

<c.3> = Next hop address of the route sent (Target Address).

Use fe80::cccc:cccc:cccc:cccc.

<c.4> = Address of the new route sent (Destination in the route table).

July 2024	 	 	 	 	 	 	 	 	 	 20

IPv6 Security Training Course

Use the goal address 2001:db8:BAD:DAD::1.

Use <c.1>, <c.2>, <c.3>, and <c.4> values in the commands shown below.

On the attacker (Host C) there are two tools available to send ICMPv6
Redirect messages: rd6 and redir6. Choose one of them:

1) IPv6 Toolkit rd6: A tool to send arbitrary ICMPv6 Redirect messages.

rd6 -i eth0 -s <c.1> -d <c.2> -t <c.3> -r <c.4> -n -v

2) THC-IPV6 redir6: A tool to implant a route into a victim host using an
ICMPv6 Redirect message.

redir6 eth0 <c.2> <c.4> <c.1> <c.3>

Sent ICMPv6 redirect for 2001:db8:BAD:DAD::1

Optional: You can use Scapy’s sniff() function to listen to icmpv6 packets on
Host A, to have a look to the received Redirect packet:

scapy

>>> pkts=sniff(iface="eth0",lfilter = lambda x: x.haslayer(ICMPv6ND_Redirect))

^C

>>> pkts.show()

d) Check the IPv6 route table on Host A

ip -6 route get 2001:db8:BAD:DAD::1

ip -6 route show cache

ip -6 route sh

July 2024	 	 	 	 	 	 	 	 	 	 21

IPv6 Security Training Course

Do you see the route sent in the previous step? Does it expire or last for a
long time?

TIP: The effect of the Redirect message just last few seconds. You have to
quickly check the route table on Host A to see the results.

e) Configure a filter to DROP ICMPv6 Redirect messages on the INPUT
chain of Host A

ip6tables -A INPUT -p icmpv6 --icmpv6-type 137 -j DROP

ip6tables -L -n

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP icmpv6 ::/0 ::/0 ipv6-icmptype 137

Remember that ICMPv6 Redirect messages are type 137.

f) From Host C send an ICMPv6 Redirect message

Try the Redirect attack again towards Host A, using the same technique that
worked before.

g) Check the IPv6 route table on Host A

Do you see now the route sent in the previous step?

July 2024	 	 	 	 	 	 	 	 	 	 22

IPv6 Security Training Course

2. (Optional) Filtering Rogue RA messages

In this exercise we will use:

• Host B as the host to protect

• Host C as the attacker

a) Check configuration on Host B

ip -6 route show

ip addr show eth0

The first command shows you the default routes towards the discovered
routers.

The second command shows you the IPv6 addresses of the interface eth0.

b) Send a rogue RA message from Host C

scapy

>>> g=IPv6(src="fe80::a:b:c:d",dst="ff02::1")

>>> h=ICMPv6ND_RA(M=0,O=0)

>>> i=ICMPv6NDOptPrefixInfo(prefixlen=64, prefix="2001:db8:bad:beef::",L=1,A=1)

>>> pkt = g / h / i

>>> send (pkt)

The previous command sends a RA including a Prefix Option including the
prefix 2001:db8:BAD:BEEF::/64 with flags L and A set to 1. It also configures
some timers, valid and preferred lifetimes, respectively.

NOTE: You can use Scapy’s sniff() function to listen to icmpv6 packets on
Host B, to have a look to the received RA packet:

scapy

>>> pkts=sniff(iface="eth0",lfilter = lambda x: x.haslayer(ICMPv6ND_RA))

^C

>>> pkts.show()

July 2024	 	 	 	 	 	 	 	 	 	 23

IPv6 Security Training Course

c) Check configuration on Host B

ip -6 route show

ip addr show eth0

Do you see any changes on the routes or in the interface addresses?

d) Configure a proper filtering rule against rogue RAs

We still want to receive RAs from the legitimate router. In order to do that, we
need to know:

d.1) Router’s link-local address: _________

d.2) Router’s MAC address: _____________

With previous information we can configure the filtering rules:

ip6tables -A INPUT -i eth0 -m mac --mac-source <d.2> —s <d.1> —p icmpv6
--icmpv6-type 134 -j ACCEPT

ip6tables -A INPUT -p icmpv6 --icmpv6-type 134 -j DROP

Remember that RAs are ICMPv6 type 134.

Check the configured rules (MAC and link-local address will be different):

ip6tables -L -n

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT icmpv6 fe80::ab:cd ::/0 MAC 00:54:12:ab:cd:ef ipv6-icmptype 134

DROP icmpv6 ::/0 ::/0 ipv6-icmptype 134

NOTE: We applied the filtering rule to only one interface (eth0), because in
other interfaces the router (if there is one) will have another MAC and link-
local addresses.

July 2024	 	 	 	 	 	 	 	 	 	 24

IPv6 Security Training Course

e) Send a rogue RA message from Host C

Use another prefix:

scapy

>>> g=IPv6(src="fe80::a:b:c:d",dst="ff02::1")

>>> h=ICMPv6ND_RA(M=0,O=0)

>>> i=ICMPv6NDOptPrefixInfo(prefixlen=64, prefix="2001:db8:bad:b00c::",L=1,A=1)

>>> pkt = g / h / i

>>> send (pkt)

f) Check configuration on Host B

ip -6 route show

ip addr show eth0

Do you see any new changes on the routes or in the interface addresses?

g) As an attacker, can you figure out a way to get through the filtering rule? In
other words, can you be sure you will never receive a rogue RA on Host A? 

July 2024	 	 	 	 	 	 	 	 	 	 25

IPv6 Security Training Course

Annex
Scapy tool
Scapy can be used in two ways:

• Embedded in a Python code as a library (from scapy.all import *)

• It’s own interactive shell, the one we used in our labs.

Here you have more details about the multiple options available in Scapy.

Visualising Packets
If you have created or captured a packet pkt:

• ls(pkt): have the list of fields values

• pkt.summary(): for a one-line summary

• pkt.show(): for a developed view of the packet

• pkt.show2(): same as show but on the assembled packet (checksum is
calculated, for instance)

Sniffing Packets
You can sniff packets using Scapy using the sniff() function. You can use,
among others, the following parameter to the function:

• Interface(s): iface=“<interface-name>”. If no interface is given, scapy will
sniff on all interfaces.

>>> a = sniff(iface="eth0")

>>> b = sniff(iface=[“eth1”,”eth2”])

• Filter (BDF/tcpdump style): filter=“<filtering parameters>”

>>> a = sniff(filter="tcp and (port 25 or port 110)")

>>>

July 2024	 	 	 	 	 	 	 	 	 	 26

IPv6 Security Training Course

• Filter (using lambdas): lfilter=""

>>> a = sniff(lfilter = lambda x: x.haslayer(IPv6))

>>> b = sniff(lfilter = lambda x: x.haslayer(ICMPv6ND_NA))

• Limit the number of packets sniffed: count=<number-of-pkts>

>>> packets = sniff(iface=“eth0",count=100)

To save captured packets to a PCAP file:

>>> packets = sniff(iface=“eth0",count=100)

>>> wrpcap(“packets-on-eth0.cap”,packets)

To read packets from a PCAP file:

>>> packets=rdpcap(“/tmp/captures/ipv6-1.cap”)

>>> packets

<ipv6-1.cap: UDP:121 TCP:36 ICMP:5 Other:30>

>>> packets.show()

Or:

>>> packets=sniff(offline=“/tmp/captures/ipv6-1.cap”)

Scapy routing table
Now Scapy has its own routing table, so that you can have your packets
routed differently than the system:

• See routes, IPv4 and IPv6, respectively:

>>> conf.route

>>> conf.route6

• Add route:

>>> conf.route.add(net="0.0.0.0/0",gw="192.168.8.254")

>>> conf.route.add(host=“192.168.1.1",gw="192.168.8.1")

>>> conf.route6.add(dst="::/0",gw="fe80::BAD",dev="eth0")

>>> conf.route6.add(dst=“2001:db8:A:b::1/128”,gw=“fe80::A”)

July 2024	 	 	 	 	 	 	 	 	 	 27

IPv6 Security Training Course

• Delete route:

>>> conf.route.delt(dst=“::/0”)

>>> conf.route6.delt(dst=“2001:db8:a:b::/64”,gw=“fe80::A”)

• Reset routes to be the same as the ones in the system:

>>> conf.route.resync()

>>> conf.route6.resync()

Getting more information
The following are functions you can use to know more about Scapy:

• help(): use as argument the function you want to know more about, for
example, help(conf.route6.add)

• ls(): use as argument the layer class or name you want to know more
about, for example, ls(IPv6), or ls(ICMPv6ND_RA). Without arguments it
shows a list of protocols/layers.

• lsc(): No arguments. Shows a list of the commands available.

You can also start typing the function or command and press Tab to see all
the possibilities.

tcpdump
tcpdump is a simple and well known tool, that allows to capture packets
using a text terminal. Captured packets can be shown in the terminal or save
to a file for later processing, using for example Scapy or Wireshark.

Examples:

• Capture IPv6 packets on interface eth0 (-vv makes the output very
verbose)

tcpdump -i eth0 —vv ip6

July 2024	 	 	 	 	 	 	 	 	 	 28

IPv6 Security Training Course

• Capture IPv6 + UDP packets on eth0

tcpdump -i eth0 —vv ip6 proto 17

• Capture IPv6 + TCP packets on eth0

tcpdump -i eth0 —vv ip6 proto 6

References
[1] Scapy Project: http://secdev.org/projects/scapy/

[2] Scapy Official Online HTML documentation: http://scapy.readthedocs.io/
en/latest/

[3] The Hacker's Choice:

	 - THC-IPV6: https://github.com/vanhauser-thc/thc-ipv6

	 - On Twitter: https://twitter.com/hackerschoice?lang=en

[4] The IPv6 Toolkit: http://www.si6networks.com/tools/ipv6toolkit/

July 2024	 	 	 	 	 	 	 	 	 	 29

http://secdev.org/projects/scapy/
http://scapy.readthedocs.io/en/latest/
http://scapy.readthedocs.io/en/latest/
https://github.com/vanhauser-thc/thc-ipv6
https://twitter.com/hackerschoice?lang=en
http://www.si6networks.com/tools/ipv6toolkit/

	Enter the Lab Environment
	Exercise 2.1: IPv6 Packet Generation
	1. The lab network
	2. The Scapy Tool
	3. IPv6 Packet Generation
	4. Exit Scapy
	Exercise 2.2: IPv6 Network Scanning
	Exercise 3.2-a: NDP Threats using NS/NA
	1. Neighbour cache attack using NS
	2. Neighbour cache attack using NA
	Exercise 3.2-b: NDP Threats using RS/RA
	1. RA with bogus address configuration prefix
	Exercise 3.3: MLD
	Exercise 4.1: IPv6 Packet Filtering
	1. Filtering Redirect messages
	2. (Optional) Filtering Rogue RA messages
	Annex
	Scapy tool
	Visualising Packets
	Sniffing Packets
	Scapy routing table
	Getting more information
	tcpdump

	References

