

Introduction to IPv6

Webinar

RIPE NCC Learning & Development

This session is being recorded

Take two polls!

Tell us about yourself!

Overview

IPv6 Address Basics

Exercise: Address Notation

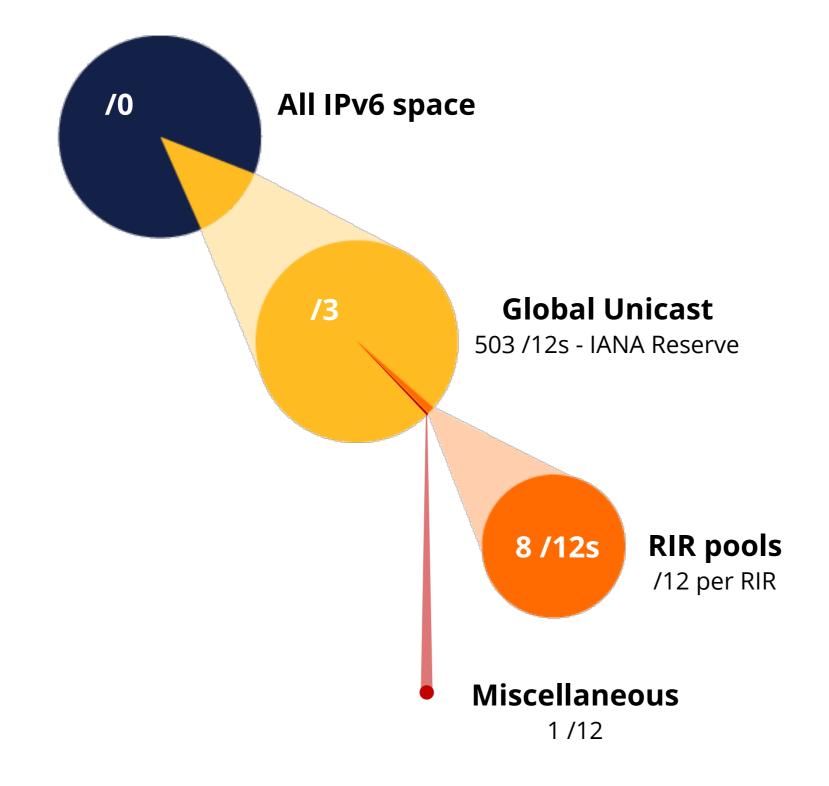
Q&A

Getting it

Q&A

Exercise: Making Assignments

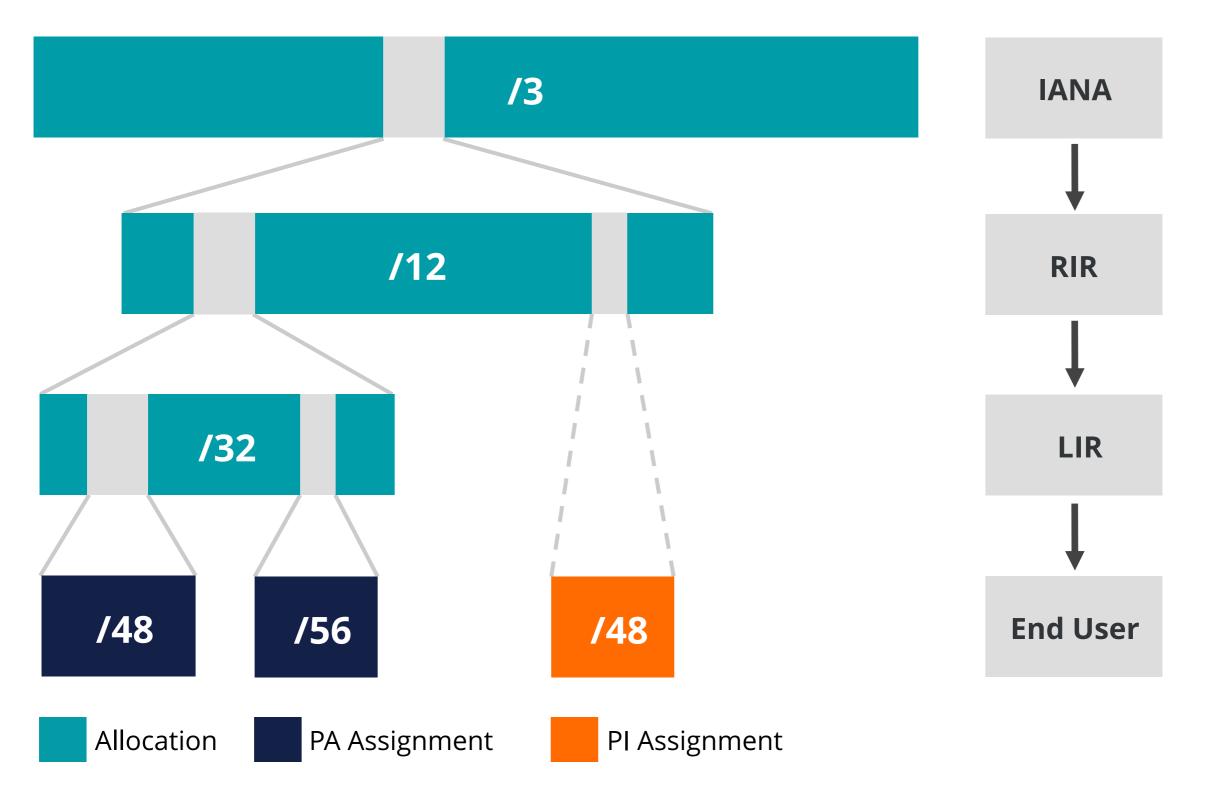
Q&A


Key Takeaways and Tips

IPv6 Address Basics

IP Address Distribution

RIR Pools


October 2006

RIR	IPv6 Range	
AFRINIC	2C00:0000::/12	
APNIC	2400:0000::/12	
ARIN	2600:0000::/12	
LACNIC	2800:0000::/12	
RIPE NCC	2A00:0000::/12	

June 2019	RIPE NCC	2A10:0000::/12
November 2019	ARIN	2630:0000::/12
November 2024	APNIC	2410:0000::/12

IP Address Distribution

IPv6 Address Basics

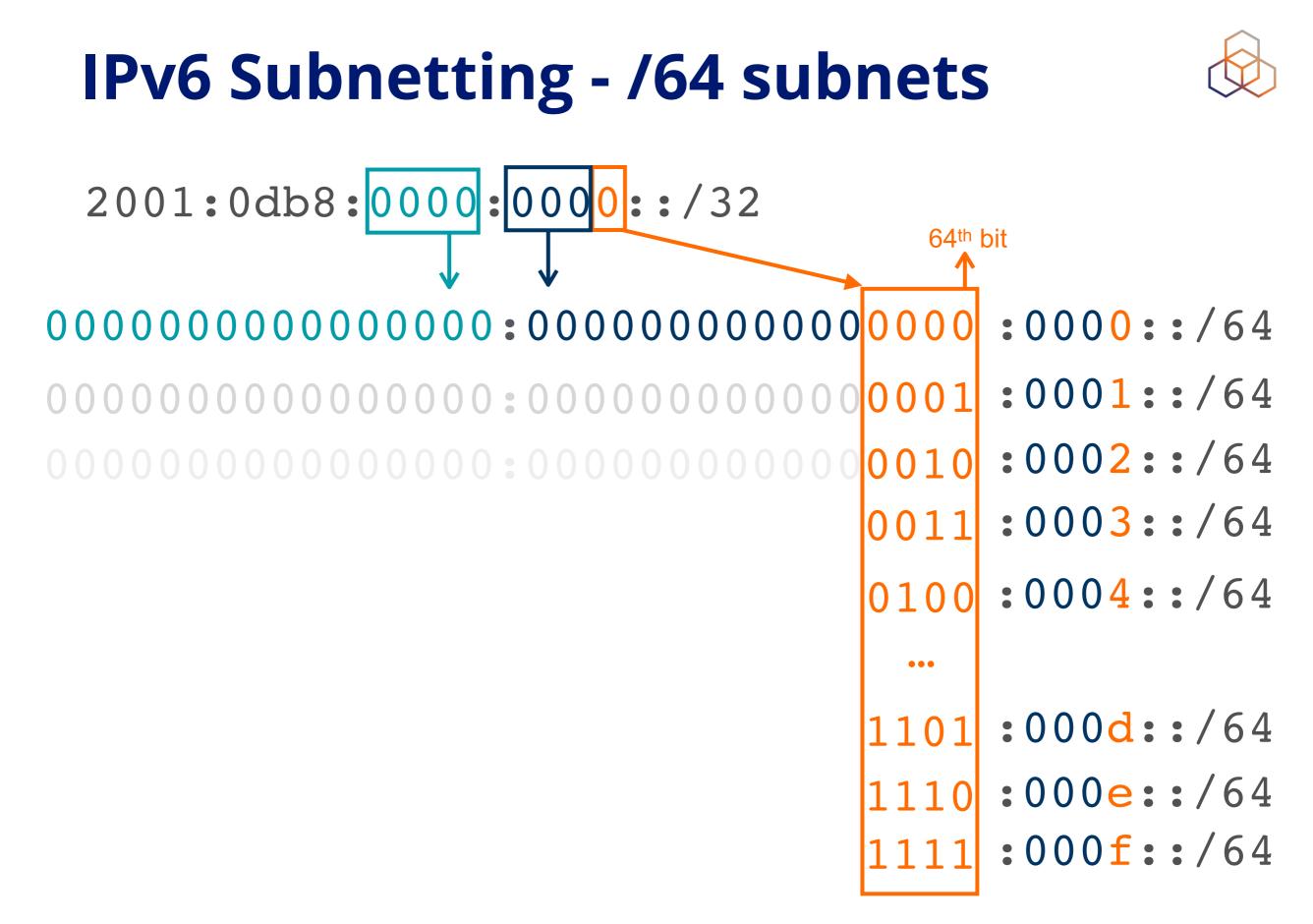
- IPv6 address: **128 bits**
 - 32 bits in IPv4
- Every subnet should be a **/64**
- Customer assignments (sites) between:
 - /64 (1 subnet)
 - /48 (65,536 subnets)
- Minimum allocation size /32
 - 65,536 /48s
 - 16,777,216 /56s

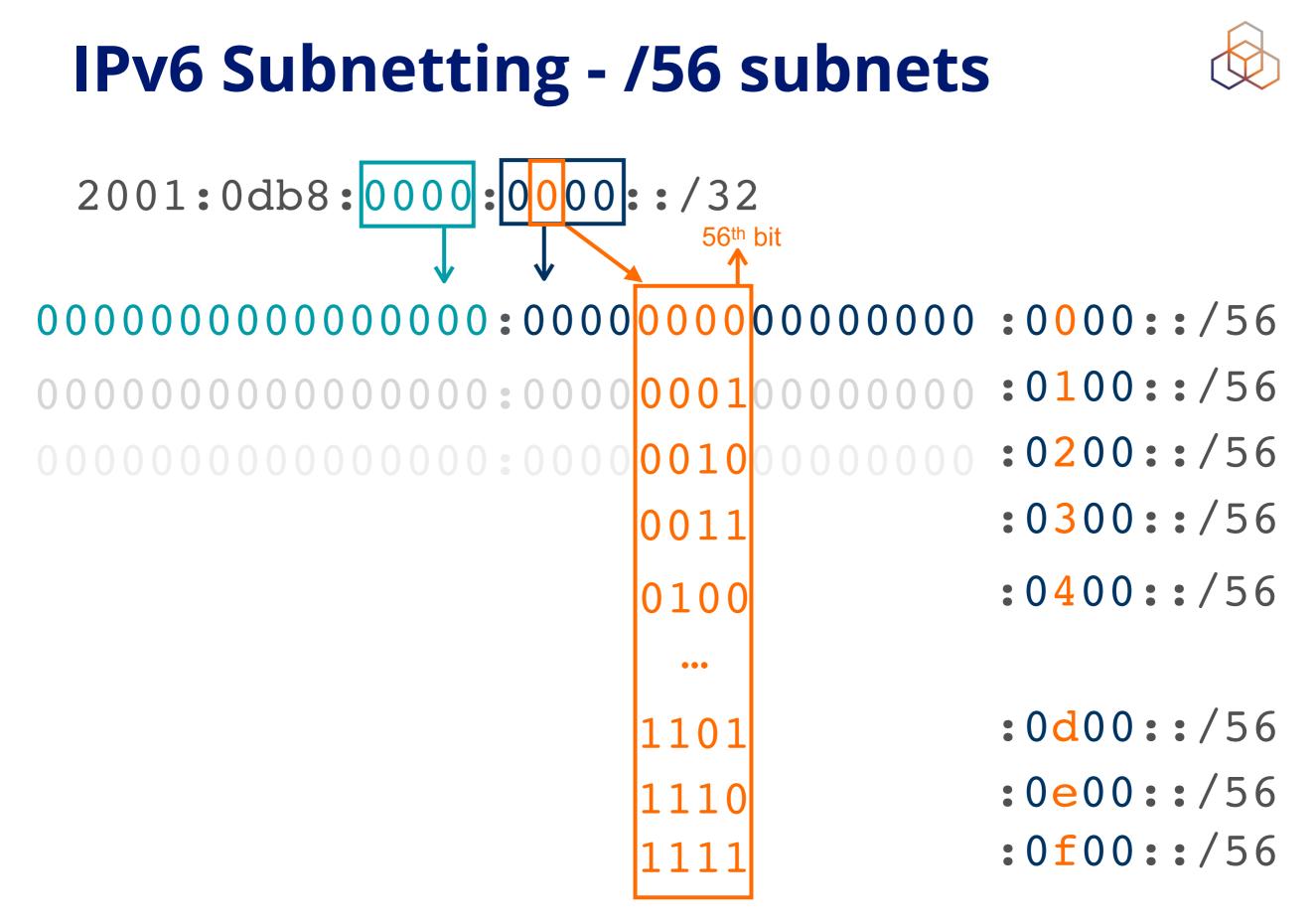
Multiple address types

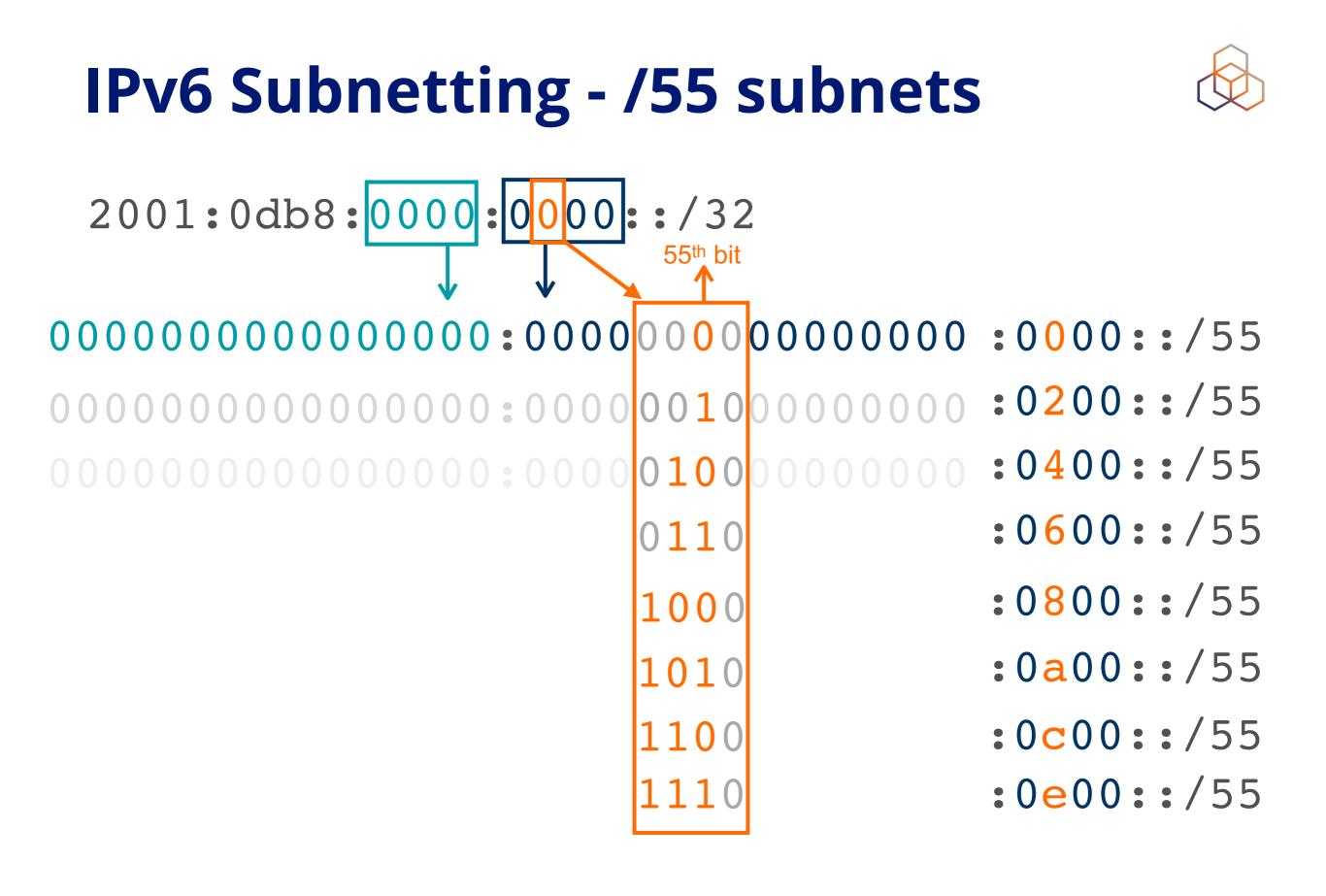
Addresses	Range	Scope
Unspecified	::/128	n/a
Loopback	::1	host
IPv4-Embedded	64:ff9b::/96	n/a
Discard-Only	100::/64	n/a
Link Local	fe80::/10	link
Global Unicast	2000::/3	global
Unique Local	fc00::/7	global
Multicast	ff00::/8	variable

2001:0db8:003e:ef11:0000:0000:c100:004d

2001:0db8:003e:ef11:0000:0000:c100:004d


2001:db8:3e:<u>ef11</u>:0:0:c100:4d


1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1


IPv6 Subnetting

2001:0db8:0000:0000:0000:0000:0000:0000:00 64 bits interface ID /64 /60 = 16 x /64 /56 = 256 x /64 $/52 = 4096 \times /64$ /48 = 65536 x /64 /32 = 65536 x /48

IPv6 Address Notation

Exercise

Question #1

You have a /32 prefix starting with **2001:0db8**.

How do you search for it in the RIPE Database?

Question #1 Answer

You have a /32 prefix starting with **2001:0db8**.

How do you search for it in the RIPE Database?

a. 2001:0db8
b. 2001:0db8/32
✓ c. 2001:0db8::/32
✓ d. 2001:db8::/32

Question #2

How do you correctly compress the following IPv6 address:

2001:0db8:0000:0000:0000:0000:0000:0c50

Question #2 Answer

How do you correctly compress the following IPv6 address:

2001:0db8:0000:0000:0000:0000:0000:0c50

- a. 2001:0db8:0:0:0:0:0c50
 b. 2001:0db8::0c50
 c. 2001:db8::c50
 - d. 2001:db8::c5

Question #3

How do you correctly compress the following IPv6 address:

2001:0db8:0000:0000:b450:0000:0000:00b4

Question #3 Answer

How do you correctly compress the following IPv6 address:

2001:0db8:0000:0000:b450:0000:0000:00b4

a. 2001:db8::b450::b4

- b. 2001:db8::b450:0:0:b4
 - c. 2001:db8::b45:0000:0000:b4
- ✓ d. 2001:db8:0:0:b450::b4

Question #4

How do you correctly compress the following IPv6 address:

2001:0db8:00f0:0000:0000:03d0:0000:00ff

Question #4 Answer

How do you correctly compress the following IPv6 address:

2001:0db8:00f0:0000:0000:03d0:0000:00ff

a. 2001:0db8:00f0::3d0:0:00ff
 b. 2001:db8:f0:0:0:3d0:0:ff
 c. 2001:db8:f0::3d0:0:ff
 d. 2001:0db8:0f0:0:0:3d0:0:0ff

Question #5

How do you correctly compress the following IPv6 address:

2001:0db8:0f3c:00d7:7dab:03d0:0000:00ff

Question #5 Answer

How do you correctly compress the following IPv6 address:

2001:0db8:0f3c:00d7:7dab:03d0:0000:00ff

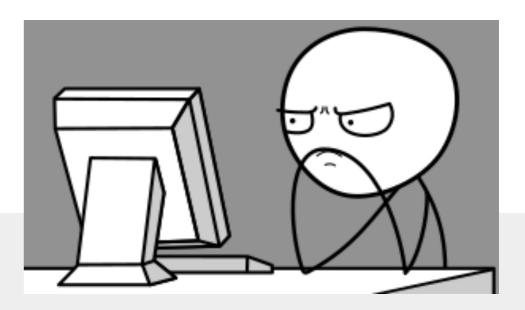
- a. 2001:db8:f3c:d7:7dab:3d:0:ff
- b. 2001:db8:f3c:d7:7dab:3d0:0:ff
- **C**. 2001:db8:f3c:d7:7dab:3d0::ff
 - d. 2001:0db8:0f3c:00d7:7dab:03d::00ff

Question #6

How do you access your IPv6 web server at **2001:db8::8080** on port 8080 using a web browser?

Question #6 Answer

How do you access your IPv6 web server at **2001:db8::8080** on port 8080 using a web browser?


- a. http://2001:db8::8080:8080
- **c**. http://[2001:db8::8080]:8080
 - d. You cannot use the IPv6 address, you have to rely on DNS

IPv6 Notation - RFC 5952

For more information, please read RFC 5952:

"A Recommendation for IPv6 Address Text Representation"

Link to the RFC:

https://datatracker.ietf.org/doc/html/rfc5952

Questions

Getting It

Getting an IPv6 allocation

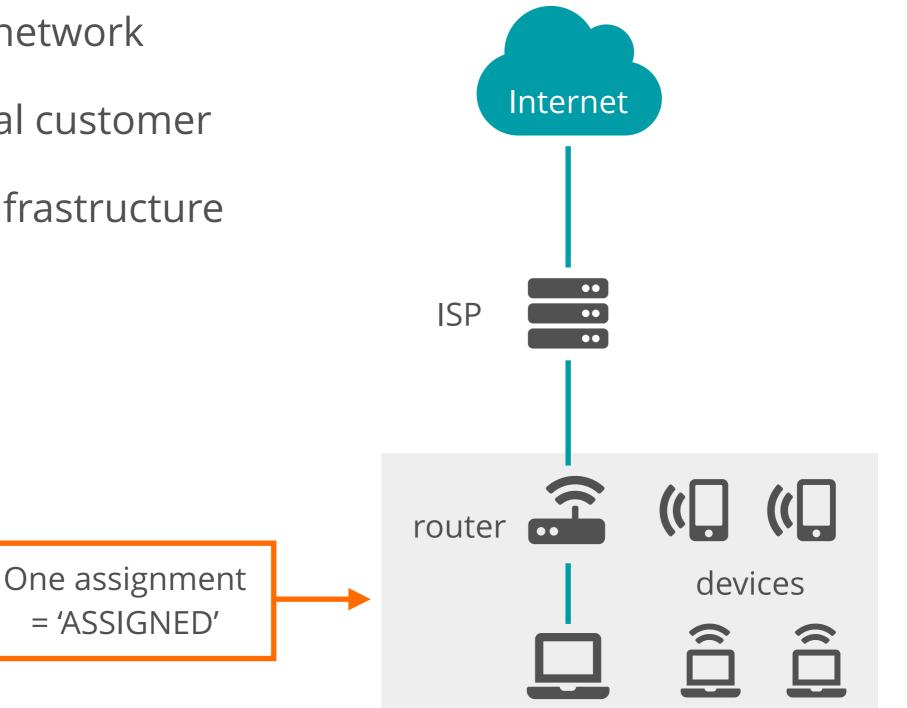
- To qualify, an organisation **must**:
 - Be an LIR
 - Have a plan for making assignments within two years
- Minimum allocation size /32
 - Up to a /29 without additional justification
 - More if justified by customer numbers and network extension
 - Additional bits based on hierarchical and geographical structure, planned longevity and security levels

Customer Assignments

- Give your customers enough addresses
 - Minimum /64
 - Up to /48
- Originally, for more than /48, send in request form
- Every assignment must be registered in the RIPE Database

RIPE Policy Proposal 2019-06

- LIR can create assignments larger than /48 without a request
- Will need to justify it if there is an audit or if LIR requests subsequent allocation



IPv4		ΙΡν6
ALLOCATED PA	Allocation	ALLOCATED-BY-RIR
ASSIGNED PA	Assignment	ASSIGNED
AGGREGATED-BY-LIR	Group of Assignments	AGGREGATED-BY-LIR
SUB-ALLOCATED PA	Sub-Allocation	ALLOCATED-BY-LIR
ASSIGNED PI	PI Assignment	ASSIGNED PI

Examples ASSIGNED

- One single network
- An individual customer
- Your own infrastructure

Using ASSIGNED

- Represents one assignment
- Minimum assignment size is a /64

Using ASSIGNED - Example Object

inet6num:	2001:db8:1000::/48
netname:	CUSTOMER-NET
country:	NL
admin-c:	ADM321-RIPE
tech-c:	NOC123-RIPE
status:	ASSIGNED
mnt-by:	LIR-MNT
created:	2015-05-31T08:23:35Z
last-modified:	2015-05-31T08:23:35Z
source:	RIPE

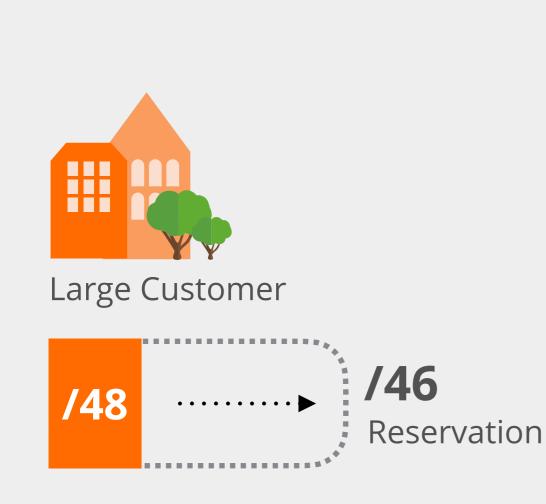
Examples AGGREGATED-BY-LIR


- Group of customers
- Same assignment size

Using AGGREGATED-BY-LIR

- Can be used to group customers
 - For example: Residential broadband customers
- **"assignment-size:"** = assignment of each customer

Using AGGREGATED-BY-LIR - Example



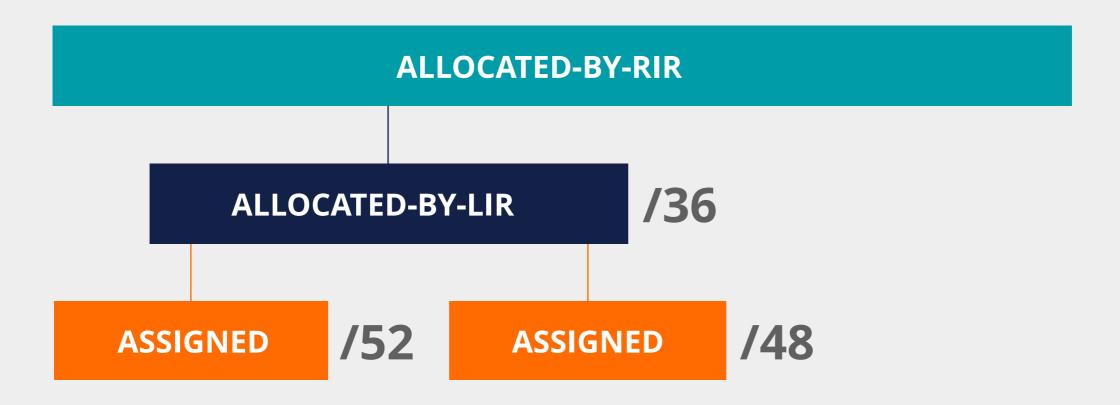
inet6num:	2001:db8:1000::/36		
netname:	DSL-Broadband-Pool		
country:	NL		
admin-c:	ADM321-RIPE		
tech-c:	NOC123-RIPE		
status:	AGGREGATED-BY-LIR		
assignment-size:	56		
assignment-size: mnt-by:	56 LIR-MNT		
mnt-by:	LIR-MNT		
mnt-by: notify:	LIR-MNT noc@example.net		
mnt-by: notify: created:	LIR-MNT noc@example.net 2015-05-31T08:23:35Z		

Examples ALLOCATED-BY-LIR

Reservation for a large customer

Branch office or department

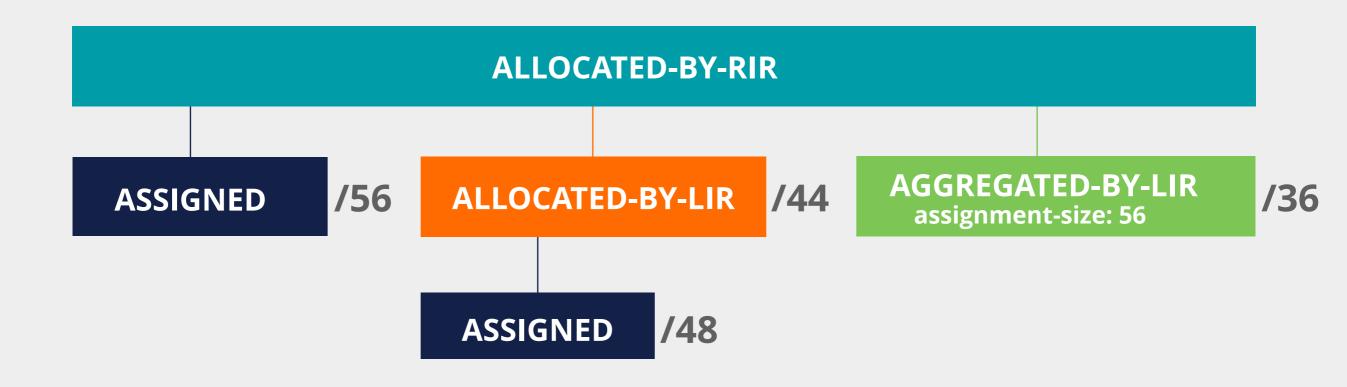
Branch Office



Using ALLOCATED-BY-LIR

Can be used for customers with **potential for growth**

- Or for your own infrastructure
- Or to delegate address space to a downstream ISP


Using ALLOCATED-BY-LIR - Example

	inet6num:	2001:db8:50::/44
	netname:	Branch-Office-Network
	country:	NL
	admin-c:	ADM321-RIPE
	tech-c:	NOC123-RIPE
(status:	ALLOCATED-BY-LIR
	mnt-by:	LIR-MNT
l	mnt-by: mnt-lower:	LIR-MNT BRANCH-OFFICE-MNT
	mnt-lower:	BRANCH-OFFICE-MNT
l	mnt-lower: notify: created:	BRANCH-OFFICE-MNT noc@example.net
l	mnt-lower: notify: created:	BRANCH-OFFICE-MNT noc@example.net 2015-05-31T08:23:35Z

Getting IPv6 PI Address Space

- To qualify, an organisation must:
 - Meet the contractual requirements for provider independent resources
 - LIRs must demonstrate special **routing requirements**
- Minimum assignment size: **/48**
- PI space **cannot** be used for sub-assignments

Unique Local Addresses

- Prefixes from fc00::/7
 - Only from the **fd00::/8** block
- Should **not** be routed on the Internet
- Generate a random 40-bit Global ID and insert it into fdxx:xxx:xxxx

Global ID: da24154e1d Prefix: fdda:2415:4e1d::/48

Questions

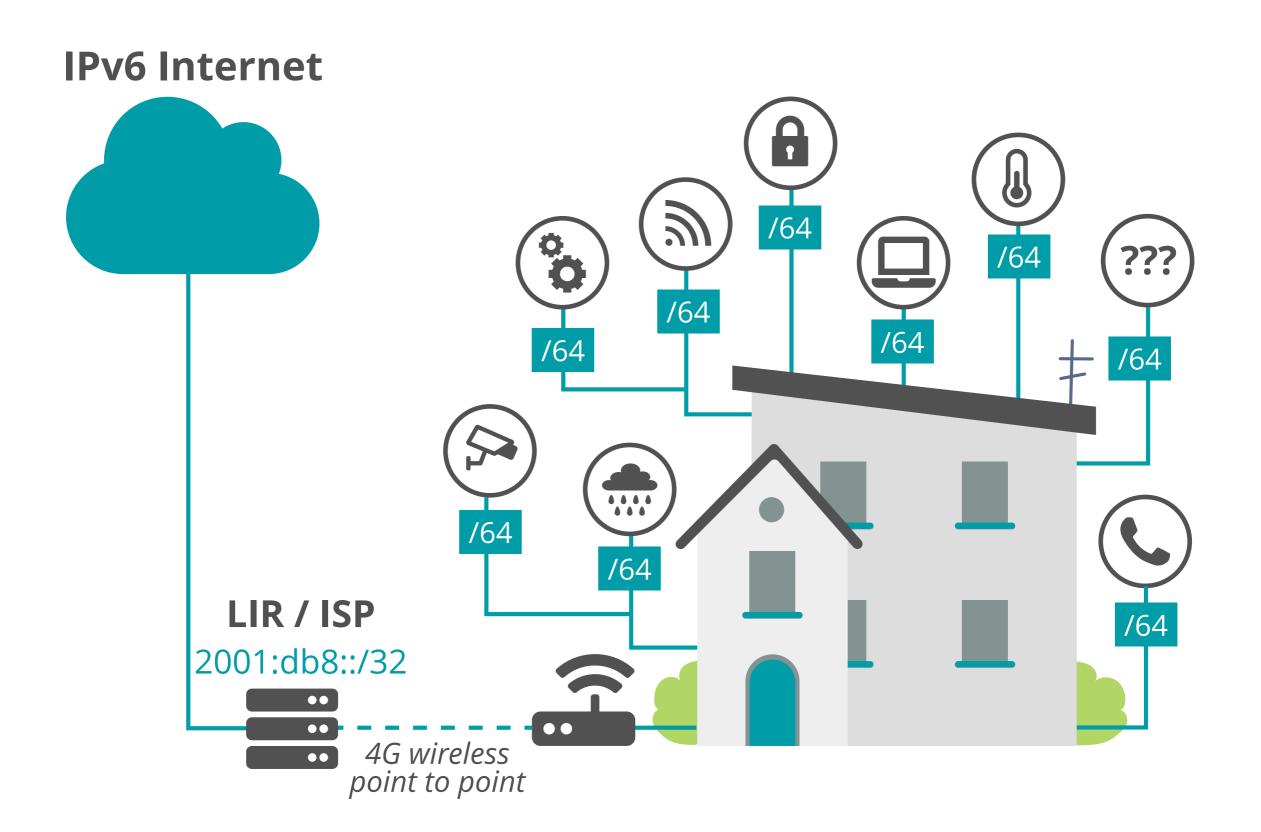
Let's take a 5 minute break!

Making Assignments

Exercise

Create assignments for a smart city!

Context


- You work for the LIR: nl.ripencc-ts
- Your LIR has a /32 allocation: 2001:db8::/32
- Your customer Future Casa is working on a project called "Smart Home 6"
- They need IPv6 addresses from your address space
- Future Casa wants to connect **1** million Smart Homes

Product Description

- Each home will be equipped with a 4G-enabled base unit
- The base unit will be the central gateway for smart services inside the house
- Each smart service runs on a **dedicated subnet**
- Services can be enabled or disabled at any point from a user's smartphone app
- Future Casa will be rolling out **new services in the future**

Activity 1

Take the poll!

Which prefix should you assign to each smart home?

Calculations...

• /64 = 1 subnet

- Not enough. We need one subnet alone for the p2p conn.

• /63 = 2 subnets

- Not enough subnets.
- Not on the 4-bit boundary!

/60 = 16 subnets

- Is it enough to meet the future needs?
- You want to avoid having to renumber!

Calculations...

/56 = 256 subnets

- Sounds reasonable. How many subnets can a house need?

/52 = 4096 subnets

- More than enough.

/48 = 65K subnets

- Definitely more than enough.

Activity 2

Take the poll!

Given that each smart home will be assigned a /56, what is the total address space required for 1 million smart homes?

One million smart homes X /56 per home

2001:db8:5000::/36 2001:db8:6000::/36 2001:db8:7000::/36 2001:db8:8000::/36 2001:db8:9000::/36 2001:db8:a000::/36

2001:db8:0000::/36

2001:db8:1000::/36

2001:db8:2000::/36

2001:db8:3000::/36

2001:db8:4000::/36

2001:db8:b000::/36

2001:db8:c000::/36

2001:db8:d000::/36

2001:db8:e000::/36

2001:db8:f000::/36

Activity 3

Take the poll!

You have decided to use **2001:db8:1000::/36** for the Smart Homes project.

What **status** would you use to register this address space in the RIPE DB?

Solution RIPE Database object

inet6num:	2001:db8:1000::/36		
netname:	SMART-HOME-6		
descr: Smart Home 6 netw			
country: NL			
admin-c:	RM1204-RIPE		
tech-c:	RM1204-RIPE		
status:	AGGREGATED-BY-LIR		
assignment-size:	56		
mnt-by:	LIR-MNT		
notify:	noc@lir-example.com		
created:	2015-05-31T12:34:01Z		
ast-modified: 2015-05-31T12:34:01Z			
source:	RIPE		

Solution RIPE Database object

inet6num: 2001:db8:1000::/36		
netname: SMART-HOME-6		
descr:	Smart Home 6 network	
country: NL		
admin-c: RM1204-RIPE		
ech-c: RM1204-RIPE		
status: ALLOCATED-BY-LI		
mnt-by:	LIR-MNT	
mnt-lower:	SMART-CASA-MNT	
notify:	noc@lir-example.com	
created:	eated: 2015-05-31T12:34:01Z	
last-modified:	lified: 2015-05-31T12:34:01Z	
source:	RIPE	

Questions

Key Takeaways and Tips

- Get your allocation from the RIPE NCC
- Study your address space needs factoring in **future growth**
- Register **every assignment** in the RIPE Database
- Plan every step and test
- Check your hardware and software

RIPE-772 Document

- "Requirements for IPv6 in ICT Equipment"
 - Best Current Practice describing what to ask for when requesting IPv6 Support
 - Useful for tenders and RFPs
 - Original version was ripe-554
 - Ripe-554 Originated by the Slovenian Government
 - Adopted by various others (Germany, Sweden)

Link to the document:

https://www.ripe.net/publications/docs/ripe-772

Customers And Their /48

- Customers have no idea how to handle 65,536 subnets!
- Provide them with information!

Link to the document:

https://www.ripe.net/support/training/material/

basicipv6-addressing-plan-howto.pdf

What's Next in IPv6

ដឹុ÷រ៉ិ

品 Webinars

Attend another webinar live wherever you are.

- Introduction to IPv6 (2 hrs)
- IPv6 Addressing Plan (1 hr)
- Basic IPv6 Protocol Security (2 hrs)
- IPv6 Associated Protocols (2 hrs)
- IPv6 Security Myths, Filtering and Tips
 (2 hrs)

For more info click the link below

Meet us at a location near you for a training session delivered in person.

Face-to-face

- IPv6 Fundamentals (8.5 hrs)
- Advanced IPv6 (17 hrs)
- IPv6 Security (8.5 hrs)

E-learning

Learn at your own pace at our online Academy.

- IPv6 Fundamentals (15 hrs)
- IPv6 Security (24 hrs)

🔁 Examinations

Learnt everything you needed? Get certified!

- IPv6 Fundamentals Analyst
- IPv6 Security Expert

For more info click the link below

DESE Hereitige

We want your feedback!

What did you think about this session?

Take our survey at:

https://www.ripe.net/feedback/ipv61/

Learn something new today! academy.ripe.net

RIPE NCC Certified Professionals

https://getcertified.ripe.net/

Have more questions? Ask us! academy@ripe.net

Ënn	Соңы	An Críoch	پايان	Y Diwedd	
Vége	Endir	Finvezh	վերջ	Ende	Koniec
Son	დასასრული	הסוף	Tmiem	Кінець	Finis
Lõpp	Amaia Sfârşit	Loppu	Slutt	Liðugt	Крај
Kraj	النهاية	Конег			und
Fine	Fin Ein	Fí	Край	Konec	Τέλος
	Slut			F	Pabaiga
Fim				Be	eigas
			1 2		

Copyright Statement

[...]

The RIPE NCC Materials may be used for **private purposes**, **for public non-commercial purpose**, **for research**, **for educational or demonstration purposes**, or if the materials in question specifically state that use of the material is permissible, and provided the RIPE NCC Materials are not modified and are properly identified as RIPE NCC documents. Unless authorised by the RIPE NCC in writing, any use of the RIPE NCC Materials for advertising or marketing purposes is strictly forbidden and may be prosecuted. The RIPE NCC should be notified of any such activities or suspicions thereof.

[...]

Find the full copyright statement here: https://www.ripe.net/about-us/legal/copyright-statement

